Normalized defining polynomial
\( x^{9} - 3 x^{8} - 24 x^{7} + 16716 x^{6} - 284739 x^{5} - 7737933 x^{4} - 23831493 x^{3} - 3590248800 x^{2} - 81561281136 x - 472053560768 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1453334803357813012385364987=-\,3^{15}\cdot 7^{7}\cdot 103^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1042.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{21} a^{6} - \frac{2}{21} a^{5} - \frac{10}{21} a^{4} + \frac{2}{7} a^{3} - \frac{5}{21} a^{2} - \frac{4}{21} a + \frac{8}{21}$, $\frac{1}{2604} a^{7} + \frac{29}{2604} a^{6} + \frac{38}{651} a^{5} + \frac{12}{217} a^{4} - \frac{369}{868} a^{3} + \frac{1283}{2604} a^{2} - \frac{613}{2604} a - \frac{134}{651}$, $\frac{1}{2342045033854974591017182342608} a^{8} + \frac{41384204532052759472944915}{334577861979282084431026048944} a^{7} + \frac{2333809585283706732993283727}{146377814615935911938573896413} a^{6} - \frac{17839317170525465606588712853}{585511258463743647754295585652} a^{5} + \frac{684909384294017820124585028669}{2342045033854974591017182342608} a^{4} + \frac{999365706154738529743538078923}{2342045033854974591017182342608} a^{3} - \frac{267895661379647886815987504141}{2342045033854974591017182342608} a^{2} - \frac{3674241250207399426656724561}{292755629231871823877147792826} a - \frac{5679154493890312715028878560}{146377814615935911938573896413}$
Class group and class number
$C_{3}\times C_{6}\times C_{2382}$, which has order $42876$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 399658.7253676217 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.42107121.4, 3.1.19467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.15.28 | $x^{9} + 3 x^{8} + 6 x^{7} + 3 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $103$ | 103.3.2.3 | $x^{3} - 412$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 103.6.5.2 | $x^{6} - 412$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |