Normalized defining polynomial
\( x^{9} - x^{8} - 7x^{7} + 8x^{6} + 8x^{5} - x^{4} - 25x^{3} + 11x^{2} + 8x + 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-127745014464\)
\(\medspace = -\,2^{6}\cdot 3^{7}\cdot 97^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.14\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(3\), \(97\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-291}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{281}a^{8}-\frac{65}{281}a^{7}-\frac{62}{281}a^{6}+\frac{42}{281}a^{5}+\frac{130}{281}a^{4}+\frac{109}{281}a^{3}+\frac{24}{281}a^{2}-\frac{120}{281}a+\frac{101}{281}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $\frac{127}{281}a^{8}-\frac{106}{281}a^{7}-\frac{849}{281}a^{6}+\frac{838}{281}a^{5}+\frac{774}{281}a^{4}+\frac{355}{281}a^{3}-\frac{2853}{281}a^{2}+\frac{1058}{281}a+\frac{463}{281}$, $\frac{264}{281}a^{8}-\frac{300}{281}a^{7}-\frac{1756}{281}a^{6}+\frac{2377}{281}a^{5}+\frac{1443}{281}a^{4}-\frac{448}{281}a^{3}-\frac{6028}{281}a^{2}+\frac{3726}{281}a+\frac{1093}{281}$, $\frac{26}{281}a^{8}-\frac{4}{281}a^{7}-\frac{207}{281}a^{6}-\frac{32}{281}a^{5}+\frac{289}{281}a^{4}+\frac{586}{281}a^{3}-\frac{219}{281}a^{2}-\frac{310}{281}a-\frac{184}{281}$, $\frac{203}{281}a^{8}-\frac{269}{281}a^{7}-\frac{1346}{281}a^{6}+\frac{2063}{281}a^{5}+\frac{1100}{281}a^{4}-\frac{634}{281}a^{3}-\frac{5244}{281}a^{2}+\frac{4302}{281}a+\frac{271}{281}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 218.311429326 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 218.311429326 \cdot 1}{2\cdot\sqrt{127745014464}}\cr\approx \mathstrut & 0.606043907335 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{3}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.9.6.1 | $x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.8.7.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
\(97\)
| 97.3.0.1 | $x^{3} + 9 x + 92$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
97.6.3.1 | $x^{6} + 15423 x^{5} + 79289952 x^{4} + 135879195543 x^{3} + 8406149382 x^{2} + 1230324290685 x + 12523534343973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.291.2t1.a.a | $1$ | $ 3 \cdot 97 $ | \(\Q(\sqrt{-291}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.1164.3t2.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 97 $ | 3.1.1164.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.3492.24t22.b.a | $2$ | $ 2^{2} \cdot 3^{2} \cdot 97 $ | 8.2.31936253616.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.3492.24t22.b.b | $2$ | $ 2^{2} \cdot 3^{2} \cdot 97 $ | 8.2.31936253616.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.10476.4t5.a.a | $3$ | $ 2^{2} \cdot 3^{3} \cdot 97 $ | 4.2.10476.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.338724.6t8.b.a | $3$ | $ 2^{2} \cdot 3^{2} \cdot 97^{2}$ | 4.2.10476.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.3048516.8t23.b.a | $4$ | $ 2^{2} \cdot 3^{4} \cdot 97^{2}$ | 8.2.31936253616.2 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.127745014464.9t26.a.a | $8$ | $ 2^{6} \cdot 3^{7} \cdot 97^{3}$ | 9.3.127745014464.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.120...776.18t157.a.a | $8$ | $ 2^{6} \cdot 3^{7} \cdot 97^{5}$ | 9.3.127745014464.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.383...016.24t1334.a.a | $16$ | $ 2^{10} \cdot 3^{14} \cdot 97^{8}$ | 9.3.127745014464.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |