Normalized defining polynomial
\( x^{9} - 2x^{8} - 14x^{7} + 52x^{6} - 62x^{5} + 49x^{4} - 101x^{3} + 181x^{2} - 161x + 63 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-126746061030603\)
\(\medspace = -\,3^{7}\cdot 7^{4}\cdot 17^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(36.90\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(17\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29927}a^{8}-\frac{10681}{29927}a^{7}+\frac{10588}{29927}a^{6}-\frac{4994}{29927}a^{5}+\frac{950}{29927}a^{4}+\frac{252}{29927}a^{3}+\frac{2221}{29927}a^{2}+\frac{14233}{29927}a+\frac{4865}{29927}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{31829}{29927}a^{8}-\frac{24756}{29927}a^{7}-\frac{481327}{29927}a^{6}+\frac{1065643}{29927}a^{5}-\frac{587260}{29927}a^{4}+\frac{748647}{29927}a^{3}-\frac{2299744}{29927}a^{2}+\frac{2800369}{29927}a-\frac{1460636}{29927}$, $\frac{3483}{29927}a^{8}-\frac{2662}{29927}a^{7}-\frac{51914}{29927}a^{6}+\frac{113193}{29927}a^{5}-\frac{72901}{29927}a^{4}+\frac{129541}{29927}a^{3}-\frac{314620}{29927}a^{2}+\frac{343624}{29927}a-\frac{173449}{29927}$, $\frac{51239}{29927}a^{8}-\frac{38637}{29927}a^{7}-\frac{776226}{29927}a^{6}+\frac{1694123}{29927}a^{5}-\frac{911989}{29927}a^{4}+\frac{1180844}{29927}a^{3}-\frac{3631729}{29927}a^{2}+\frac{4452747}{29927}a-\frac{2288627}{29927}$, $\frac{7115}{29927}a^{8}-\frac{10662}{29927}a^{7}-\frac{112347}{29927}a^{6}+\frac{320236}{29927}a^{5}-\frac{183814}{29927}a^{4}-\frac{2640}{29927}a^{3}-\frac{328238}{29927}a^{2}+\frac{563440}{29927}a-\frac{400115}{29927}$, $\frac{19293}{29927}a^{8}+\frac{8789}{29927}a^{7}-\frac{246834}{29927}a^{6}+\frac{404749}{29927}a^{5}-\frac{226390}{29927}a^{4}+\frac{342859}{29927}a^{3}-\frac{903521}{29927}a^{2}+\frac{974708}{29927}a-\frac{439532}{29927}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 18047.6383173 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 18047.6383173 \cdot 1}{2\cdot\sqrt{126746061030603}}\cr\approx \mathstrut & 1.59056982699 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.8.7.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.6.3.1 | $x^{6} + 861 x^{5} + 33033 x^{4} + 1385475 x^{3} + 277830 x^{2} + 8232 x - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(17\)
| 17.3.2.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
17.3.2.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
17.3.2.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.867.3t2.b.a | $2$ | $ 3 \cdot 17^{2}$ | 3.1.867.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.127449.24t22.a.a | $2$ | $ 3^{2} \cdot 7^{2} \cdot 17^{2}$ | 8.2.438567685227.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.127449.24t22.a.b | $2$ | $ 3^{2} \cdot 7^{2} \cdot 17^{2}$ | 8.2.438567685227.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.7803.4t5.a.a | $3$ | $ 3^{3} \cdot 17^{2}$ | 4.2.7803.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.2601.6t8.a.a | $3$ | $ 3^{2} \cdot 17^{2}$ | 4.2.7803.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.56205009.8t23.a.a | $4$ | $ 3^{4} \cdot 7^{4} \cdot 17^{2}$ | 8.2.438567685227.1 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.126...603.9t26.a.a | $8$ | $ 3^{7} \cdot 7^{4} \cdot 17^{6}$ | 9.3.126746061030603.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.126...603.18t157.a.a | $8$ | $ 3^{7} \cdot 7^{4} \cdot 17^{6}$ | 9.3.126746061030603.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.555...881.24t1334.a.a | $16$ | $ 3^{14} \cdot 7^{8} \cdot 17^{10}$ | 9.3.126746061030603.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |