Properties

Label 9.3.126746061030603.1
Degree $9$
Signature $[3, 3]$
Discriminant $-1.267\times 10^{14}$
Root discriminant \(36.90\)
Ramified primes $3,7,17$
Class number $1$
Class group trivial
Galois group $((C_3^2:Q_8):C_3):C_2$ (as 9T26)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63)
 
gp: K = bnfinit(y^9 - 2*y^8 - 14*y^7 + 52*y^6 - 62*y^5 + 49*y^4 - 101*y^3 + 181*y^2 - 161*y + 63, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63)
 

\( x^{9} - 2x^{8} - 14x^{7} + 52x^{6} - 62x^{5} + 49x^{4} - 101x^{3} + 181x^{2} - 161x + 63 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-126746061030603\) \(\medspace = -\,3^{7}\cdot 7^{4}\cdot 17^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(36.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Ramified primes:   \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29927}a^{8}-\frac{10681}{29927}a^{7}+\frac{10588}{29927}a^{6}-\frac{4994}{29927}a^{5}+\frac{950}{29927}a^{4}+\frac{252}{29927}a^{3}+\frac{2221}{29927}a^{2}+\frac{14233}{29927}a+\frac{4865}{29927}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{31829}{29927}a^{8}-\frac{24756}{29927}a^{7}-\frac{481327}{29927}a^{6}+\frac{1065643}{29927}a^{5}-\frac{587260}{29927}a^{4}+\frac{748647}{29927}a^{3}-\frac{2299744}{29927}a^{2}+\frac{2800369}{29927}a-\frac{1460636}{29927}$, $\frac{3483}{29927}a^{8}-\frac{2662}{29927}a^{7}-\frac{51914}{29927}a^{6}+\frac{113193}{29927}a^{5}-\frac{72901}{29927}a^{4}+\frac{129541}{29927}a^{3}-\frac{314620}{29927}a^{2}+\frac{343624}{29927}a-\frac{173449}{29927}$, $\frac{51239}{29927}a^{8}-\frac{38637}{29927}a^{7}-\frac{776226}{29927}a^{6}+\frac{1694123}{29927}a^{5}-\frac{911989}{29927}a^{4}+\frac{1180844}{29927}a^{3}-\frac{3631729}{29927}a^{2}+\frac{4452747}{29927}a-\frac{2288627}{29927}$, $\frac{7115}{29927}a^{8}-\frac{10662}{29927}a^{7}-\frac{112347}{29927}a^{6}+\frac{320236}{29927}a^{5}-\frac{183814}{29927}a^{4}-\frac{2640}{29927}a^{3}-\frac{328238}{29927}a^{2}+\frac{563440}{29927}a-\frac{400115}{29927}$, $\frac{19293}{29927}a^{8}+\frac{8789}{29927}a^{7}-\frac{246834}{29927}a^{6}+\frac{404749}{29927}a^{5}-\frac{226390}{29927}a^{4}+\frac{342859}{29927}a^{3}-\frac{903521}{29927}a^{2}+\frac{974708}{29927}a-\frac{439532}{29927}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18047.6383173 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 18047.6383173 \cdot 1}{2\cdot\sqrt{126746061030603}}\cr\approx \mathstrut & 1.59056982699 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 2*x^8 - 14*x^7 + 52*x^6 - 62*x^5 + 49*x^4 - 101*x^3 + 181*x^2 - 161*x + 63);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:\GL(2,3)$ (as 9T26):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 432
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$
Character table for $((C_3^2:Q_8):C_3):C_2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 sibling: data not computed
Degree 24 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ R ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.3.0.1}{3} }^{3}$ R ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{3}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.8.7.2$x^{8} + 6$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.6.3.1$x^{6} + 861 x^{5} + 33033 x^{4} + 1385475 x^{3} + 277830 x^{2} + 8232 x - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(17\) Copy content Toggle raw display 17.3.2.1$x^{3} + 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.3.2.1$x^{3} + 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.3.2.1$x^{3} + 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
2.867.3t2.b.a$2$ $ 3 \cdot 17^{2}$ 3.1.867.1 $S_3$ (as 3T2) $1$ $0$
2.127449.24t22.a.a$2$ $ 3^{2} \cdot 7^{2} \cdot 17^{2}$ 8.2.438567685227.1 $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
2.127449.24t22.a.b$2$ $ 3^{2} \cdot 7^{2} \cdot 17^{2}$ 8.2.438567685227.1 $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
3.7803.4t5.a.a$3$ $ 3^{3} \cdot 17^{2}$ 4.2.7803.1 $S_4$ (as 4T5) $1$ $1$
3.2601.6t8.a.a$3$ $ 3^{2} \cdot 17^{2}$ 4.2.7803.1 $S_4$ (as 4T5) $1$ $-1$
4.56205009.8t23.a.a$4$ $ 3^{4} \cdot 7^{4} \cdot 17^{2}$ 8.2.438567685227.1 $\textrm{GL(2,3)}$ (as 8T23) $1$ $0$
* 8.126...603.9t26.a.a$8$ $ 3^{7} \cdot 7^{4} \cdot 17^{6}$ 9.3.126746061030603.1 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $2$
8.126...603.18t157.a.a$8$ $ 3^{7} \cdot 7^{4} \cdot 17^{6}$ 9.3.126746061030603.1 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $-2$
16.555...881.24t1334.a.a$16$ $ 3^{14} \cdot 7^{8} \cdot 17^{10}$ 9.3.126746061030603.1 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.