Normalized defining polynomial
\( x^{9} - x^{8} - 2085 x^{7} - 77286 x^{6} - 1437264 x^{5} - 16258695 x^{4} - 116782119 x^{3} + \cdots - 1460616767 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-1259466642471540279228280776978112\)
\(\medspace = -\,2^{6}\cdot 37^{7}\cdot 73^{3}\cdot 127^{7}\)
|
| |
| Root discriminant: | \(4762.10\) |
| |
| Galois root discriminant: | $2^{2/3}37^{5/6}73^{1/2}127^{5/6}\approx 15572.295322709964$ | ||
| Ramified primes: |
\(2\), \(37\), \(73\), \(127\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-343027}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{73}a^{6}-\frac{25}{73}a^{5}+\frac{5}{73}a^{4}-\frac{24}{73}a^{3}-\frac{10}{73}a^{2}+\frac{6}{73}a-\frac{27}{73}$, $\frac{1}{73}a^{7}-\frac{36}{73}a^{5}+\frac{28}{73}a^{4}-\frac{26}{73}a^{3}-\frac{25}{73}a^{2}-\frac{23}{73}a-\frac{18}{73}$, $\frac{1}{73}a^{8}+\frac{4}{73}a^{5}+\frac{8}{73}a^{4}-\frac{13}{73}a^{3}-\frac{18}{73}a^{2}-\frac{21}{73}a-\frac{23}{73}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{18}\times C_{1524510}$, which has order $82323540$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{18}\times C_{1524510}$, which has order $82323540$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{8}-8a^{7}-2029a^{6}-63083a^{5}-995683a^{4}-9288914a^{3}-51759721a^{2}-159363410a-208659537$, $a^{8}-9a^{7}-2013a^{6}-61182a^{5}-947808a^{4}-8676231a^{3}-47372271a^{2}-142703289a-182577096$, $\frac{5}{73}a^{8}-\frac{43}{73}a^{7}-\frac{10098}{73}a^{6}-\frac{309688}{73}a^{5}-\frac{4833081}{73}a^{4}-\frac{44572317}{73}a^{3}-\frac{245297244}{73}a^{2}-\frac{745162528}{73}a-\frac{961793038}{73}$, $\frac{68}{73}a^{8}-\frac{614}{73}a^{7}-\frac{136851}{73}a^{6}-\frac{4156598}{73}a^{5}-\frac{64356903}{73}a^{4}-\frac{588792546}{73}a^{3}-\frac{3212878539}{73}a^{2}-\frac{9672177569}{73}a-\frac{12366334897}{73}$, $\frac{245}{73}a^{8}-\frac{2135}{73}a^{7}-\frac{494375}{73}a^{6}-\frac{15121015}{73}a^{5}-\frac{235443495}{73}a^{4}-\frac{2166117975}{73}a^{3}-\frac{11888762235}{73}a^{2}-\frac{36005217780}{73}a-\frac{46312621947}{73}$
|
| |
| Regulator: | \( 77054.60654044396 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 77054.60654044396 \cdot 82323540}{2\cdot\sqrt{1259466642471540279228280776978112}}\cr\approx \mathstrut & 0.177349066195908 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.22080601.1, 3.1.1372108.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Minimal sibling: | 6.0.14259877284041547139367728.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.3.0.1}{3} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/41.3.0.1}{3} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(37\)
| 37.1.3.2a1.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 37.1.6.5a1.5 | $x^{6} + 592$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
|
\(73\)
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{73}$ | $x + 68$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 73.1.2.1a1.1 | $x^{2} + 73$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 73.1.2.1a1.1 | $x^{2} + 73$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 73.1.2.1a1.1 | $x^{2} + 73$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(127\)
| 127.1.3.2a1.3 | $x^{3} + 1143$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 127.1.6.5a1.3 | $x^{6} + 1143$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |