Properties

Label 9.3.120824570757...7296.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{6}\cdot 23^{3}\cdot 79^{7}\cdot 97^{7}$
Root discriminant $4740.18$
Ramified primes $2, 23, 79, 97$
Class number $6464367$ (GRH)
Class group $[3, 3, 718263]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7077293973, 4301447904, 1292801328, 223678667, 23125507, 1169751, 499, -2766, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - x^8 - 2766*x^7 + 499*x^6 + 1169751*x^5 + 23125507*x^4 + 223678667*x^3 + 1292801328*x^2 + 4301447904*x + 7077293973)
 
gp: K = bnfinit(x^9 - x^8 - 2766*x^7 + 499*x^6 + 1169751*x^5 + 23125507*x^4 + 223678667*x^3 + 1292801328*x^2 + 4301447904*x + 7077293973, 1)
 

Normalized defining polynomial

\( x^{9} - x^{8} - 2766 x^{7} + 499 x^{6} + 1169751 x^{5} + 23125507 x^{4} + 223678667 x^{3} + 1292801328 x^{2} + 4301447904 x + 7077293973 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1208245707570684710118650479647296=-\,2^{6}\cdot 23^{3}\cdot 79^{7}\cdot 97^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $4740.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 23, 79, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{23} a^{6} + \frac{7}{23} a^{5} + \frac{1}{23} a^{4} + \frac{9}{23} a^{3} - \frac{10}{23} a^{2} + \frac{10}{23} a - \frac{10}{23}$, $\frac{1}{69} a^{7} - \frac{1}{69} a^{6} - \frac{3}{23} a^{5} + \frac{1}{69} a^{4} + \frac{11}{23} a^{3} - \frac{2}{69} a^{2} + \frac{2}{69} a - \frac{4}{23}$, $\frac{1}{427275919004624367849} a^{8} - \frac{512271908786362960}{427275919004624367849} a^{7} - \frac{1730582997455550004}{142425306334874789283} a^{6} + \frac{43388461124645051902}{427275919004624367849} a^{5} - \frac{33698784856986792593}{142425306334874789283} a^{4} - \frac{49591745042062317932}{427275919004624367849} a^{3} + \frac{179255010856580519357}{427275919004624367849} a^{2} - \frac{9314483412874264642}{47475102111624929761} a + \frac{20387680479562471287}{47475102111624929761}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{718263}$, which has order $6464367$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1413381.8944556064 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.58721569.2, 3.1.704996.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ R ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
$23$23.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$79$79.3.2.1$x^{3} - 79$$3$$1$$2$$C_3$$[\ ]_{3}$
79.6.5.5$x^{6} + 632$$6$$1$$5$$C_6$$[\ ]_{6}$
$97$97.3.2.1$x^{3} - 97$$3$$1$$2$$C_3$$[\ ]_{3}$
97.6.5.5$x^{6} + 12125$$6$$1$$5$$C_6$$[\ ]_{6}$