Properties

Label 9.3.115628935825...2736.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{9}\cdot 13^{6}\cdot 53^{3}\cdot 61^{7}$
Root discriminant $1016.27$
Ramified primes $2, 13, 53, 61$
Class number $23436$ (GRH)
Class group $[3, 6, 1302]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-63809903, -790050311, -247197987, -16560990, 1898588, 222481, -3987, -839, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 839*x^7 - 3987*x^6 + 222481*x^5 + 1898588*x^4 - 16560990*x^3 - 247197987*x^2 - 790050311*x - 63809903)
 
gp: K = bnfinit(x^9 - 839*x^7 - 3987*x^6 + 222481*x^5 + 1898588*x^4 - 16560990*x^3 - 247197987*x^2 - 790050311*x - 63809903, 1)
 

Normalized defining polynomial

\( x^{9} - 839 x^{7} - 3987 x^{6} + 222481 x^{5} + 1898588 x^{4} - 16560990 x^{3} - 247197987 x^{2} - 790050311 x - 63809903 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1156289358257292074937012736=-\,2^{9}\cdot 13^{6}\cdot 53^{3}\cdot 61^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1016.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 53, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{854} a^{6} - \frac{198}{427} a^{5} + \frac{94}{427} a^{4} + \frac{132}{427} a^{3} - \frac{47}{122} a^{2} - \frac{187}{427} a + \frac{211}{854}$, $\frac{1}{854} a^{7} - \frac{173}{427} a^{5} + \frac{207}{427} a^{4} + \frac{27}{854} a^{3} + \frac{2}{427} a^{2} - \frac{151}{854} a - \frac{68}{427}$, $\frac{1}{3076673707576086350614} a^{8} + \frac{230916280147729860}{1538336853788043175307} a^{7} + \frac{376139099152605247}{1538336853788043175307} a^{6} + \frac{387011856125053536120}{1538336853788043175307} a^{5} - \frac{918484508004707776841}{3076673707576086350614} a^{4} + \frac{79628750948766895467}{219762407684006167901} a^{3} - \frac{778066803223937384009}{3076673707576086350614} a^{2} + \frac{344673277668305540644}{1538336853788043175307} a + \frac{128025434289403456856}{1538336853788043175307}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{6}\times C_{1302}$, which has order $23436$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 417541.6895841703 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.628849.2, 3.1.25864.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ R ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.5$x^{6} - 4 x^{4} + 4 x^{2} + 8$$2$$3$$9$$C_6$$[3]^{3}$
$13$13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.4.1$x^{6} + 39 x^{3} + 676$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$53$$\Q_{53}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{53}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{53}$$x + 2$$1$$1$$0$Trivial$[\ ]$
53.2.1.1$x^{2} - 53$$2$$1$$1$$C_2$$[\ ]_{2}$
53.2.1.1$x^{2} - 53$$2$$1$$1$$C_2$$[\ ]_{2}$
53.2.1.1$x^{2} - 53$$2$$1$$1$$C_2$$[\ ]_{2}$
$61$61.3.2.3$x^{3} - 244$$3$$1$$2$$C_3$$[\ ]_{3}$
61.6.5.2$x^{6} - 244$$6$$1$$5$$C_6$$[\ ]_{6}$