Properties

Label 9.3.110852311.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,31^{3}\cdot 61^{2}$
Root discriminant $7.83$
Ramified primes $31, 61$
Class number $1$
Class group Trivial
Galois group $C_3 \wr S_3 $ (as 9T20)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -2, -8, -1, 8, 2, -4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - x^8 - 4*x^7 + 2*x^6 + 8*x^5 - x^4 - 8*x^3 - 2*x^2 + 3*x + 1)
 
gp: K = bnfinit(x^9 - x^8 - 4*x^7 + 2*x^6 + 8*x^5 - x^4 - 8*x^3 - 2*x^2 + 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-110852311=-\,31^{3}\cdot 61^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $31, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{8} - 2 a^{7} - 3 a^{6} + 6 a^{5} + 5 a^{4} - 7 a^{3} - 5 a^{2} + 3 a + 2 \),  \( a^{5} - a^{4} - 2 a^{3} + a^{2} + 2 a \),  \( a^{8} - a^{7} - 4 a^{6} + 2 a^{5} + 8 a^{4} - a^{3} - 8 a^{2} - a + 3 \),  \( a^{8} - a^{7} - 4 a^{6} + 3 a^{5} + 7 a^{4} - 3 a^{3} - 7 a^{2} + 2 \),  \( a^{6} - a^{5} - 3 a^{4} + 2 a^{3} + 4 a^{2} - 2 a - 2 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1.94853837145 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\wr S_3$ (as 9T20):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 162
The 22 conjugacy class representatives for $C_3 \wr S_3 $
Character table for $C_3 \wr S_3 $ is not computed

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.9.0.1}{9} }$ ${\href{/LocalNumberField/7.9.0.1}{9} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.9.0.1}{9} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ R ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.6.3.2$x^{6} - 961 x^{2} + 268119$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$61$61.3.2.2$x^{3} + 122$$3$$1$$2$$C_3$$[\ ]_{3}$
61.6.0.1$x^{6} - 4 x + 10$$1$$6$$0$$C_6$$[\ ]^{6}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.31.2t1.1c1$1$ $ 31 $ $x^{2} - x + 8$ $C_2$ (as 2T1) $1$ $-1$
1.61.3t1.1c1$1$ $ 61 $ $x^{3} - x^{2} - 20 x + 9$ $C_3$ (as 3T1) $0$ $1$
1.61.3t1.1c2$1$ $ 61 $ $x^{3} - x^{2} - 20 x + 9$ $C_3$ (as 3T1) $0$ $1$
1.31_61.6t1.1c1$1$ $ 31 \cdot 61 $ $x^{6} - x^{5} - 17 x^{4} + 7 x^{3} + 593 x^{2} - x + 6101$ $C_6$ (as 6T1) $0$ $-1$
1.31_61.6t1.1c2$1$ $ 31 \cdot 61 $ $x^{6} - x^{5} - 17 x^{4} + 7 x^{3} + 593 x^{2} - x + 6101$ $C_6$ (as 6T1) $0$ $-1$
* 2.31.3t2.1c1$2$ $ 31 $ $x^{3} + x - 1$ $S_3$ (as 3T2) $1$ $0$
2.31_61e2.6t5.1c1$2$ $ 31 \cdot 61^{2}$ $x^{6} - 3 x^{5} + 47 x^{4} + 94 x^{3} + 242 x^{2} + 2913 x + 7434$ $S_3\times C_3$ (as 6T5) $0$ $0$
2.31_61e2.6t5.1c2$2$ $ 31 \cdot 61^{2}$ $x^{6} - 3 x^{5} + 47 x^{4} + 94 x^{3} + 242 x^{2} + 2913 x + 7434$ $S_3\times C_3$ (as 6T5) $0$ $0$
3.31e2_61.18t86.3c1$3$ $ 31^{2} \cdot 61 $ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.31e2_61e2.18t86.3c1$3$ $ 31^{2} \cdot 61^{2}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.31_61e2.9t20.3c1$3$ $ 31 \cdot 61^{2}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31e2_61e2.18t86.3c2$3$ $ 31^{2} \cdot 61^{2}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
* 3.31_61.9t20.3c1$3$ $ 31 \cdot 61 $ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31_61e2.9t20.3c2$3$ $ 31 \cdot 61^{2}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31e2_61e3.18t86.3c1$3$ $ 31^{2} \cdot 61^{3}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.31e2_61.18t86.3c2$3$ $ 31^{2} \cdot 61 $ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
* 3.31_61.9t20.3c2$3$ $ 31 \cdot 61 $ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31_61e3.9t20.3c1$3$ $ 31 \cdot 61^{3}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31_61e3.9t20.3c2$3$ $ 31 \cdot 61^{3}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.31e2_61e3.18t86.3c2$3$ $ 31^{2} \cdot 61^{3}$ $x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
6.31e3_61e4.9t13.1c1$6$ $ 31^{3} \cdot 61^{4}$ $x^{9} - 3 x^{8} + 15 x^{7} - 13 x^{6} + 13 x^{5} - 75 x^{4} - 21 x^{3} - 652 x^{2} - 1200 x - 576$ $C_3^2 : C_6$ (as 9T11) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.