Normalized defining polynomial
\( x^{9} - 3 x^{8} - 1365 x^{7} - 10410 x^{6} + 646854 x^{5} + 11394435 x^{4} - 48531561 x^{3} - 2802169227 x^{2} - 26368099602 x - 83468320741 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10070215181463105265791477576384=-\,2^{6}\cdot 3^{15}\cdot 7^{7}\cdot 13^{3}\cdot 67^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2784.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{13} a^{5} - \frac{3}{13} a^{4} + \frac{3}{13} a^{2}$, $\frac{1}{13} a^{6} + \frac{4}{13} a^{4} + \frac{3}{13} a^{3} - \frac{4}{13} a^{2}$, $\frac{1}{4225} a^{7} + \frac{23}{4225} a^{6} + \frac{3}{325} a^{5} + \frac{692}{4225} a^{4} - \frac{1}{5} a^{3} - \frac{7}{25} a^{2} - \frac{6}{25} a - \frac{6}{25}$, $\frac{1}{7103420343443125} a^{8} + \frac{92652014162}{1420684068688625} a^{7} + \frac{14429804850683}{1420684068688625} a^{6} + \frac{53463305843322}{1420684068688625} a^{5} + \frac{3424933980287659}{7103420343443125} a^{4} + \frac{218926887053554}{546416949495625} a^{3} + \frac{39668265368491}{109283389899125} a^{2} - \frac{12521672129803}{42032073038125} a - \frac{224031055542}{1025172513125}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}\times C_{113868}$, which has order $12297744$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134850.14021681162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.17816841.1, 3.1.658476.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| $3$ | 3.9.15.29 | $x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 12$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 67.6.5.3 | $x^{6} - 17152$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |