Normalized defining polynomial
\( x^{9} + 270 x^{7} - 2955 x^{6} + 24300 x^{5} + 280530 x^{4} + 4127133 x^{3} - 23935500 x^{2} - 538282800 x - 1686858625 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(937789413817123972561566758976=2^{6}\cdot 3^{15}\cdot 17^{7}\cdot 59^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2139.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{5} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{4}{9}$, $\frac{1}{27081} a^{6} + \frac{100}{9027} a^{5} + \frac{10}{3009} a^{4} + \frac{3913}{27081} a^{3} + \frac{797}{9027} a^{2} - \frac{1363}{3009} a - \frac{2654}{27081}$, $\frac{1}{135405} a^{7} + \frac{8}{3009} a^{5} + \frac{197}{27081} a^{4} + \frac{334}{9027} a^{3} + \frac{1039}{3009} a^{2} + \frac{60628}{135405} a + \frac{2930}{9027}$, $\frac{1}{11212527941079525} a^{8} + \frac{962226041}{2242505588215905} a^{7} - \frac{1806454358}{131912093424465} a^{6} - \frac{63823937265241}{2242505588215905} a^{5} + \frac{16296433481206}{448501117643181} a^{4} + \frac{112539745231901}{2242505588215905} a^{3} + \frac{306453414486899}{659560467122325} a^{2} + \frac{321621289782173}{2242505588215905} a - \frac{191214015754541}{448501117643181}$
Class group and class number
$C_{6}\times C_{6}\times C_{4212}$, which has order $151632$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3993151.1525716246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| 3.1.324972.2, 3.1.27162243.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.9.15.15 | $x^{9} + 3 x^{8} + 3 x^{7} + 3 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $59$ | 59.3.2.1 | $x^{3} - 59$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 59.6.5.2 | $x^{6} + 177$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |