Normalized defining polynomial
\( x^{9} - x^{8} + 4x^{7} - 11x^{6} + 11x^{5} - 41x^{4} + 24x^{3} - 60x^{2} + 45x - 45 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[1, 4]$ |
| |
| Discriminant: |
\(895152515625\)
\(\medspace = 3^{4}\cdot 5^{6}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(21.28\) |
| |
| Galois root discriminant: | $3^{1/2}5^{2/3}29^{1/2}\approx 27.27342180226682$ | ||
| Ramified primes: |
\(3\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{5}+\frac{4}{9}a^{2}-\frac{1}{3}$, $\frac{1}{9}a^{6}+\frac{4}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{9}a^{7}+\frac{1}{9}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{27}a^{8}+\frac{1}{27}a^{7}+\frac{1}{27}a^{5}+\frac{4}{27}a^{4}-\frac{1}{9}a^{3}+\frac{4}{9}a^{2}+\frac{1}{3}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{27}a^{8}+\frac{1}{27}a^{7}-\frac{2}{27}a^{5}-\frac{14}{27}a^{4}-\frac{4}{9}a^{3}-\frac{5}{3}a^{2}-\frac{1}{3}$, $\frac{1}{9}a^{8}-\frac{2}{9}a^{7}+\frac{4}{9}a^{6}-\frac{11}{9}a^{5}+\frac{13}{9}a^{4}-\frac{26}{9}a^{3}+\frac{4}{3}a^{2}-\frac{1}{3}a-1$, $\frac{4}{27}a^{8}-\frac{14}{27}a^{7}+\frac{1}{3}a^{6}-\frac{50}{27}a^{5}+\frac{124}{27}a^{4}-\frac{25}{9}a^{3}+\frac{67}{9}a^{2}-7a+\frac{19}{3}$, $\frac{5}{27}a^{8}-\frac{10}{27}a^{7}+\frac{8}{9}a^{6}-\frac{70}{27}a^{5}+\frac{77}{27}a^{4}-\frac{16}{3}a^{3}+\frac{46}{9}a^{2}-\frac{17}{3}a+3$
|
| |
| Regulator: | \( 1085.49841916 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 1085.49841916 \cdot 1}{2\cdot\sqrt{895152515625}}\cr\approx \mathstrut & 1.78813436836 \end{aligned}\]
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_{9}$ |
| Character table for $D_{9}$ |
Intermediate fields
| 3.1.87.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.9.0.1}{9} }$ | R | R | ${\href{/padicField/7.9.0.1}{9} }$ | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | R | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.9.0.1}{9} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(5\)
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *18 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.87.2t1.a.a | $1$ | $ 3 \cdot 29 $ | \(\Q(\sqrt{-87}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *18 | 2.87.3t2.a.a | $2$ | $ 3 \cdot 29 $ | 3.1.87.1 | $S_3$ (as 3T2) | $1$ | $0$ |
| *18 | 2.2175.9t3.a.a | $2$ | $ 3 \cdot 5^{2} \cdot 29 $ | 9.1.895152515625.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
| *18 | 2.2175.9t3.a.b | $2$ | $ 3 \cdot 5^{2} \cdot 29 $ | 9.1.895152515625.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
| *18 | 2.2175.9t3.a.c | $2$ | $ 3 \cdot 5^{2} \cdot 29 $ | 9.1.895152515625.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |