Properties

Label 9.1.8502028075008.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{16}\cdot 3^{10}\cdot 13^{3}$
Root discriminant $27.33$
Ramified primes $2, 3, 13$
Class number $1$
Class group Trivial
Galois group $(C_3^2:C_8):C_2$ (as 9T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -39, -96, 18, 60, 12, -12, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 6*x^7 - 12*x^6 + 12*x^5 + 60*x^4 + 18*x^3 - 96*x^2 - 39*x - 4)
 
gp: K = bnfinit(x^9 - 6*x^7 - 12*x^6 + 12*x^5 + 60*x^4 + 18*x^3 - 96*x^2 - 39*x - 4, 1)
 

Normalized defining polynomial

\( x^{9} - 6 x^{7} - 12 x^{6} + 12 x^{5} + 60 x^{4} + 18 x^{3} - 96 x^{2} - 39 x - 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8502028075008=2^{16}\cdot 3^{10}\cdot 13^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{121} a^{8} + \frac{17}{121} a^{7} + \frac{41}{121} a^{6} - \frac{41}{121} a^{5} + \frac{41}{121} a^{4} + \frac{31}{121} a^{3} - \frac{60}{121} a^{2} - \frac{27}{121} a - \frac{14}{121}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4390.10398205 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$PSU(3,2):C_2$ (as 9T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 9 conjugacy class representatives for $(C_3^2:C_8):C_2$
Character table for $(C_3^2:C_8):C_2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.16.66$x^{8} + 8 x^{4} + 336$$8$$1$$16$$QD_{16}$$[2, 2, 5/2]^{2}$
$3$3.9.10.1$x^{9} + 3 x^{2} + 3$$9$$1$$10$$C_3^2:Q_8$$[5/4, 5/4]_{4}^{2}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_3.2t1.1c1$1$ $ 2^{2} \cdot 3 $ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
1.2e2_3_13.2t1.1c1$1$ $ 2^{2} \cdot 3 \cdot 13 $ $x^{2} - 39$ $C_2$ (as 2T1) $1$ $1$
1.13.2t1.1c1$1$ $ 13 $ $x^{2} - x - 3$ $C_2$ (as 2T1) $1$ $1$
2.2e4_3_13.4t3.2c1$2$ $ 2^{4} \cdot 3 \cdot 13 $ $x^{4} - 2 x^{3} - 4 x^{2} + 2 x + 1$ $D_{4}$ (as 4T3) $1$ $2$
2.2e5_3e2_13.8t8.2c1$2$ $ 2^{5} \cdot 3^{2} \cdot 13 $ $x^{8} - 4 x^{7} + 14 x^{6} - 16 x^{5} + 52 x^{4} - 80 x^{3} + 92 x^{2} - 140 x + 118$ $QD_{16}$ (as 8T8) $0$ $-2$
2.2e5_3e2_13.8t8.2c2$2$ $ 2^{5} \cdot 3^{2} \cdot 13 $ $x^{8} - 4 x^{7} + 14 x^{6} - 16 x^{5} + 52 x^{4} - 80 x^{3} + 92 x^{2} - 140 x + 118$ $QD_{16}$ (as 8T8) $0$ $-2$
8.2e16_3e10_13e5.18t68.1c1$8$ $ 2^{16} \cdot 3^{10} \cdot 13^{5}$ $x^{9} - 6 x^{7} - 12 x^{6} + 12 x^{5} + 60 x^{4} + 18 x^{3} - 96 x^{2} - 39 x - 4$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $0$
* 8.2e16_3e10_13e3.9t19.1c1$8$ $ 2^{16} \cdot 3^{10} \cdot 13^{3}$ $x^{9} - 6 x^{7} - 12 x^{6} + 12 x^{5} + 60 x^{4} + 18 x^{3} - 96 x^{2} - 39 x - 4$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.