Normalized defining polynomial
\( x^{9} - 5x^{7} - 18x^{6} + 60x^{5} + 40x^{4} - 252x^{3} + 280x^{2} - 160x + 64 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(8340544000000\)
\(\medspace = 2^{12}\cdot 5^{6}\cdot 19^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(27.27\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{2/3}19^{1/2}\approx 36.049711780738136$ | ||
Ramified primes: |
\(2\), \(5\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{6}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{7}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a$, $\frac{1}{9424}a^{8}+\frac{85}{4712}a^{7}-\frac{555}{9424}a^{6}-\frac{8}{589}a^{5}+\frac{11}{152}a^{4}-\frac{261}{589}a^{3}-\frac{127}{1178}a^{2}+\frac{119}{589}a+\frac{194}{589}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{375}{9424}a^{8}+\frac{69}{4712}a^{7}-\frac{1975}{9424}a^{6}-\frac{1987}{2356}a^{5}+\frac{153}{76}a^{4}+\frac{6075}{2356}a^{3}-\frac{21625}{2356}a^{2}+\frac{8557}{1178}a-\frac{875}{589}$, $\frac{9327}{1178}a^{8}+\frac{46539}{4712}a^{7}-\frac{66085}{2356}a^{6}-\frac{846205}{4712}a^{5}+\frac{9551}{38}a^{4}+\frac{1529313}{2356}a^{3}-\frac{698165}{589}a^{2}+\frac{390636}{589}a-\frac{245373}{589}$, $\frac{2727}{9424}a^{8}+\frac{907}{4712}a^{7}-\frac{13891}{9424}a^{6}-\frac{7703}{1178}a^{5}+\frac{493}{38}a^{4}+\frac{58549}{2356}a^{3}-\frac{127807}{2356}a^{2}+\frac{35877}{1178}a-\frac{11075}{589}$, $\frac{573}{4712}a^{8}+\frac{249}{589}a^{7}+\frac{45}{4712}a^{6}-\frac{14879}{2356}a^{5}+\frac{451}{76}a^{4}+\frac{11886}{589}a^{3}-\frac{20350}{589}a^{2}+\frac{13862}{589}a-\frac{6797}{589}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 15218.3715806 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 15218.3715806 \cdot 1}{2\cdot\sqrt{8340544000000}}\cr\approx \mathstrut & 8.21278527803 \end{aligned}\]
Galois group
A solvable group of order 18 |
The 6 conjugacy class representatives for $D_{9}$ |
Character table for $D_{9}$ |
Intermediate fields
3.1.152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }$ | R | ${\href{/padicField/7.9.0.1}{9} }$ | ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | R | ${\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }^{3}$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(5\)
| 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
5.6.4.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.152.2t1.b.a | $1$ | $ 2^{3} \cdot 19 $ | \(\Q(\sqrt{-38}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.152.3t2.b.a | $2$ | $ 2^{3} \cdot 19 $ | 3.1.152.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.3800.9t3.a.a | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19 $ | 9.1.8340544000000.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
* | 2.3800.9t3.a.b | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19 $ | 9.1.8340544000000.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
* | 2.3800.9t3.a.c | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19 $ | 9.1.8340544000000.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |