Normalized defining polynomial
\( x^{9} - 4x^{8} + 9x^{7} - 15x^{6} + 17x^{5} - 14x^{4} + 8x^{3} - x^{2} - x + 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(83319616\)
\(\medspace = 2^{6}\cdot 23^{3}\cdot 107\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(7.59\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(23\), \(107\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{2461}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{8}-4a^{7}+8a^{6}-12a^{5}+12a^{4}-8a^{3}+4a^{2}-1$, $a^{8}-3a^{7}+5a^{6}-7a^{5}+6a^{4}-4a^{3}+3a^{2}$, $a^{8}-3a^{7}+5a^{6}-7a^{5}+5a^{4}-2a^{3}+3a$, $a^{8}-3a^{7}+5a^{6}-7a^{5}+5a^{4}-2a^{3}+3a-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1.34933902572 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 1.34933902572 \cdot 1}{2\cdot\sqrt{83319616}}\cr\approx \mathstrut & 0.230391750668 \end{aligned}\]
Galois group
$S_3\wr S_3$ (as 9T31):
A solvable group of order 1296 |
The 22 conjugacy class representatives for $S_3\wr S_3$ |
Character table for $S_3\wr S_3$ is not computed |
Intermediate fields
3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | R | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.9.6.1 | $x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(23\)
| 23.2.1.2 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
23.3.0.1 | $x^{3} + 2 x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
107.2.0.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.4.0.1 | $x^{4} + 13 x^{2} + 79 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.23.2t1.a.a | $1$ | $ 23 $ | \(\Q(\sqrt{-23}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.107.2t1.a.a | $1$ | $ 107 $ | \(\Q(\sqrt{-107}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.2461.2t1.a.a | $1$ | $ 23 \cdot 107 $ | \(\Q(\sqrt{2461}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
2.263327.6t3.b.a | $2$ | $ 23 \cdot 107^{2}$ | 6.2.14905098181.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.23.3t2.b.a | $2$ | $ 23 $ | 3.1.23.1 | $S_3$ (as 3T2) | $1$ | $0$ |
3.263327.4t5.a.a | $3$ | $ 23 \cdot 107^{2}$ | 4.2.263327.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.56603.6t11.a.a | $3$ | $ 23^{2} \cdot 107 $ | 6.0.56603.1 | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
3.6056521.6t8.a.a | $3$ | $ 23^{2} \cdot 107^{2}$ | 4.2.263327.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
3.2461.6t11.a.a | $3$ | $ 23 \cdot 107 $ | 6.0.56603.1 | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
* | 6.3622592.9t31.a.a | $6$ | $ 2^{6} \cdot 23^{2} \cdot 107 $ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |
6.251...968.18t300.a.a | $6$ | $ 2^{6} \cdot 23^{4} \cdot 107^{5}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.1916351168.18t319.a.a | $6$ | $ 2^{6} \cdot 23^{4} \cdot 107 $ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.474...792.18t311.a.a | $6$ | $ 2^{6} \cdot 23^{2} \cdot 107^{5}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.124...496.24t2893.a.a | $8$ | $ 2^{6} \cdot 23^{6} \cdot 107^{4}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.443...456.12t213.a.a | $8$ | $ 2^{6} \cdot 23^{2} \cdot 107^{4}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.374...208.36t2217.a.a | $12$ | $ 2^{6} \cdot 23^{7} \cdot 107^{8}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
12.707...352.36t2214.a.a | $12$ | $ 2^{6} \cdot 23^{5} \cdot 107^{8}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.909...056.36t2210.a.a | $12$ | $ 2^{12} \cdot 23^{6} \cdot 107^{6}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.285...408.36t2216.a.a | $12$ | $ 2^{6} \cdot 23^{7} \cdot 107^{4}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.539...152.18t315.a.a | $12$ | $ 2^{6} \cdot 23^{5} \cdot 107^{4}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
16.551...176.24t2912.a.a | $16$ | $ 2^{12} \cdot 23^{8} \cdot 107^{8}$ | 9.1.83319616.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |