Normalized defining polynomial
\( x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8279544064=2^{8}\cdot 11^{4}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{101} a^{8} - \frac{42}{101} a^{7} + \frac{49}{101} a^{6} - \frac{44}{101} a^{5} + \frac{32}{101} a^{4} - \frac{43}{101} a^{3} - \frac{6}{101} a^{2} + \frac{38}{101} a + \frac{24}{101}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30.1962278736 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30):
| A solvable group of order 648 |
| The 14 conjugacy class representatives for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
| Character table for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Intermediate fields
| 3.1.44.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.2e2_11.3t2.1c1 | $2$ | $ 2^{2} \cdot 11 $ | $x^{3} - x^{2} + x + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e2_11e2_47e2.6t8.3c1 | $3$ | $ 2^{2} \cdot 11^{2} \cdot 47^{2}$ | $x^{4} - x^{3} - 8 x^{2} + 10 x + 6$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_11_47e2.4t5.1c1 | $3$ | $ 2^{2} \cdot 11 \cdot 47^{2}$ | $x^{4} - x^{3} - 8 x^{2} + 10 x + 6$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 6.2e6_11e3_47e2.18t222.1c1 | $6$ | $ 2^{6} \cdot 11^{3} \cdot 47^{2}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| * | 6.2e6_11e3_47e2.9t30.1c1 | $6$ | $ 2^{6} \cdot 11^{3} \cdot 47^{2}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ |
| 6.2e6_11e3_47e4.36t1130.1c1 | $6$ | $ 2^{6} \cdot 11^{3} \cdot 47^{4}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 6.2e6_11e3_47e4.36t1130.1c2 | $6$ | $ 2^{6} \cdot 11^{3} \cdot 47^{4}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e8_11e4_47e4.12t177.1c1 | $8$ | $ 2^{8} \cdot 11^{4} \cdot 47^{4}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e6_11e4_47e4.12t177.1c1 | $8$ | $ 2^{6} \cdot 11^{4} \cdot 47^{4}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e8_11e4_47e4.12t178.1c1 | $8$ | $ 2^{8} \cdot 11^{4} \cdot 47^{4}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 12.2e10_11e7_47e6.36t1124.1c1 | $12$ | $ 2^{10} \cdot 11^{7} \cdot 47^{6}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $-2$ | |
| 12.2e10_11e5_47e6.18t218.1c1 | $12$ | $ 2^{10} \cdot 11^{5} \cdot 47^{6}$ | $x^{9} + 2 x^{7} - 6 x^{6} + 2 x^{5} - 12 x^{4} + 6 x^{3} - 12 x^{2} + 4 x - 2$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $2$ |