Properties

Label 9.1.784958361408.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{6}\cdot 3^{4}\cdot 13^{3}\cdot 41^{3}$
Root discriminant $20.97$
Ramified primes $2, 3, 13, 41$
Class number $1$
Class group Trivial
Galois group $S_3\wr S_3$ (as 9T31)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13, 26, -15, -25, 1, 18, -20, 11, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 11*x^7 - 20*x^6 + 18*x^5 + x^4 - 25*x^3 - 15*x^2 + 26*x - 13)
 
gp: K = bnfinit(x^9 - 3*x^8 + 11*x^7 - 20*x^6 + 18*x^5 + x^4 - 25*x^3 - 15*x^2 + 26*x - 13, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(784958361408=2^{6}\cdot 3^{4}\cdot 13^{3}\cdot 41^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{9} a^{6} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{5} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{1161} a^{8} + \frac{5}{1161} a^{7} + \frac{17}{387} a^{6} + \frac{1}{1161} a^{5} + \frac{26}{1161} a^{4} - \frac{565}{1161} a^{3} + \frac{11}{129} a^{2} - \frac{128}{387} a - \frac{337}{1161}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 389.217101165 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr S_3$ (as 9T31):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$ is not computed

Intermediate fields

3.1.1599.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.9.0.1}{9} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.4.3.2$x^{4} - 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_13_41.2t1.1c1$1$ $ 3 \cdot 13 \cdot 41 $ $x^{2} - x + 400$ $C_2$ (as 2T1) $1$ $-1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.13_41.2t1.1c1$1$ $ 13 \cdot 41 $ $x^{2} - x - 133$ $C_2$ (as 2T1) $1$ $1$
2.3_13_41.6t3.4c1$2$ $ 3 \cdot 13 \cdot 41 $ $x^{6} - 23 x^{3} - 1$ $D_{6}$ (as 6T3) $1$ $0$
* 2.3_13_41.3t2.1c1$2$ $ 3 \cdot 13 \cdot 41 $ $x^{3} + 3 x - 23$ $S_3$ (as 3T2) $1$ $0$
3.3e3_13_41.4t5.1c1$3$ $ 3^{3} \cdot 13 \cdot 41 $ $x^{4} - x^{3} + 5 x - 2$ $S_4$ (as 4T5) $1$ $1$
3.3e3_13e2_41e2.6t11.2c1$3$ $ 3^{3} \cdot 13^{2} \cdot 41^{2}$ $x^{6} - x^{5} + 5 x^{4} - 4 x^{3} + 5 x^{2} + 2 x + 19$ $S_4\times C_2$ (as 6T11) $1$ $1$
3.3e2_13e2_41e2.6t8.1c1$3$ $ 3^{2} \cdot 13^{2} \cdot 41^{2}$ $x^{4} - x^{3} + 5 x - 2$ $S_4$ (as 4T5) $1$ $-1$
3.3e2_13_41.6t11.2c1$3$ $ 3^{2} \cdot 13 \cdot 41 $ $x^{6} - x^{5} + 5 x^{4} - 4 x^{3} + 5 x^{2} + 2 x + 19$ $S_4\times C_2$ (as 6T11) $1$ $-1$
* 6.2e6_3e3_13e2_41e2.9t31.1c1$6$ $ 2^{6} \cdot 3^{3} \cdot 13^{2} \cdot 41^{2}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e6_3e3_13e4_41e4.18t303.1c1$6$ $ 2^{6} \cdot 3^{3} \cdot 13^{4} \cdot 41^{4}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e6_3e5_13e4_41e4.18t320.1c1$6$ $ 2^{6} \cdot 3^{5} \cdot 13^{4} \cdot 41^{4}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e6_3e5_13e2_41e2.18t312.1c1$6$ $ 2^{6} \cdot 3^{5} \cdot 13^{2} \cdot 41^{2}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
8.2e6_3e6_13e6_41e6.24t2895.1c1$8$ $ 2^{6} \cdot 3^{6} \cdot 13^{6} \cdot 41^{6}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
8.2e6_3e6_13e2_41e2.12t213.1c1$8$ $ 2^{6} \cdot 3^{6} \cdot 13^{2} \cdot 41^{2}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.2e6_3e9_13e7_41e7.36t2305.1c1$12$ $ 2^{6} \cdot 3^{9} \cdot 13^{7} \cdot 41^{7}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $2$
12.2e6_3e9_13e5_41e5.36t2214.1c1$12$ $ 2^{6} \cdot 3^{9} \cdot 13^{5} \cdot 41^{5}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.2e12_3e10_13e6_41e6.36t2211.1c1$12$ $ 2^{12} \cdot 3^{10} \cdot 13^{6} \cdot 41^{6}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.2e6_3e9_13e7_41e7.36t2216.1c1$12$ $ 2^{6} \cdot 3^{9} \cdot 13^{7} \cdot 41^{7}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.2e6_3e9_13e5_41e5.18t315.1c1$12$ $ 2^{6} \cdot 3^{9} \cdot 13^{5} \cdot 41^{5}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $2$
16.2e12_3e12_13e8_41e8.24t2912.1c1$16$ $ 2^{12} \cdot 3^{12} \cdot 13^{8} \cdot 41^{8}$ $x^{9} - 3 x^{8} + 11 x^{7} - 20 x^{6} + 18 x^{5} + x^{4} - 25 x^{3} - 15 x^{2} + 26 x - 13$ $S_3\wr S_3$ (as 9T31) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.