Properties

Label 9.1.7702667535424.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{6}\cdot 19^{4}\cdot 31^{4}$
Root discriminant $27.03$
Ramified primes $2, 19, 31$
Class number $3$
Class group $[3]$
Galois group $C_3^2 : C_6$ (as 9T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-419, 1622, -1610, 999, -518, 212, -69, 18, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 4*x^8 + 18*x^7 - 69*x^6 + 212*x^5 - 518*x^4 + 999*x^3 - 1610*x^2 + 1622*x - 419)
 
gp: K = bnfinit(x^9 - 4*x^8 + 18*x^7 - 69*x^6 + 212*x^5 - 518*x^4 + 999*x^3 - 1610*x^2 + 1622*x - 419, 1)
 

Normalized defining polynomial

\( x^{9} - 4 x^{8} + 18 x^{7} - 69 x^{6} + 212 x^{5} - 518 x^{4} + 999 x^{3} - 1610 x^{2} + 1622 x - 419 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7702667535424=2^{6}\cdot 19^{4}\cdot 31^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{3024244424} a^{8} - \frac{68412325}{3024244424} a^{7} + \frac{873784543}{3024244424} a^{6} + \frac{241428929}{756061106} a^{5} + \frac{100146589}{378030553} a^{4} - \frac{202011179}{1512122212} a^{3} + \frac{1139570525}{3024244424} a^{2} - \frac{1243935119}{3024244424} a - \frac{1413880107}{3024244424}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 711.963532621 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$He_3:C_2$ (as 9T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 54
The 10 conjugacy class representatives for $C_3^2 : C_6$
Character table for $C_3^2 : C_6$

Intermediate fields

3.1.76.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/23.1.0.1}{1} }^{9}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ R ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.6.3.2$x^{6} - 361 x^{2} + 27436$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.6.4.1$x^{6} + 1085 x^{3} + 1660608$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.19.2t1.1c1$1$ $ 19 $ $x^{2} - x + 5$ $C_2$ (as 2T1) $1$ $-1$
1.31.3t1.1c1$1$ $ 31 $ $x^{3} - x^{2} - 10 x + 8$ $C_3$ (as 3T1) $0$ $1$
1.19_31.6t1.2c1$1$ $ 19 \cdot 31 $ $x^{6} - x^{5} - 6 x^{4} - 5 x^{3} + 178 x^{2} + 167 x + 1069$ $C_6$ (as 6T1) $0$ $-1$
1.19_31.6t1.2c2$1$ $ 19 \cdot 31 $ $x^{6} - x^{5} - 6 x^{4} - 5 x^{3} + 178 x^{2} + 167 x + 1069$ $C_6$ (as 6T1) $0$ $-1$
1.31.3t1.1c2$1$ $ 31 $ $x^{3} - x^{2} - 10 x + 8$ $C_3$ (as 3T1) $0$ $1$
* 2.2e2_19.3t2.1c1$2$ $ 2^{2} \cdot 19 $ $x^{3} - 2 x - 2$ $S_3$ (as 3T2) $1$ $0$
2.2e2_19_31e2.6t5.1c1$2$ $ 2^{2} \cdot 19 \cdot 31^{2}$ $x^{6} - 3 x^{5} - 36 x^{4} - 47 x^{3} + 468 x^{2} + 2345 x + 3817$ $S_3\times C_3$ (as 6T5) $0$ $0$
2.2e2_19_31e2.6t5.1c2$2$ $ 2^{2} \cdot 19 \cdot 31^{2}$ $x^{6} - 3 x^{5} - 36 x^{4} - 47 x^{3} + 468 x^{2} + 2345 x + 3817$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 6.2e4_19e3_31e4.9t13.1c1$6$ $ 2^{4} \cdot 19^{3} \cdot 31^{4}$ $x^{9} - 4 x^{8} + 18 x^{7} - 69 x^{6} + 212 x^{5} - 518 x^{4} + 999 x^{3} - 1610 x^{2} + 1622 x - 419$ $C_3^2 : C_6$ (as 9T11) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.