magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, 18, -32, 40, -40, 28, -16, 8, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 + 8*x^7 - 16*x^6 + 28*x^5 - 40*x^4 + 40*x^3 - 32*x^2 + 18*x - 4)
gp: K = bnfinit(x^9 - 2*x^8 + 8*x^7 - 16*x^6 + 28*x^5 - 40*x^4 + 40*x^3 - 32*x^2 + 18*x - 4, 1)
Normalized defining polynomial
\( x^{9} - 2 x^{8} + 8 x^{7} - 16 x^{6} + 28 x^{5} - 40 x^{4} + 40 x^{3} - 32 x^{2} + 18 x - 4 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(736586891264=2^{31}\cdot 7^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{8} - a^{7} + 7 a^{6} - 9 a^{5} + 19 a^{4} - 21 a^{3} + 19 a^{2} - 13 a + 5 \), \( a^{8} - a^{7} + 7 a^{6} - 9 a^{5} + 19 a^{4} - 21 a^{3} + 18 a^{2} - 13 a + 3 \), \( a^{8} + a^{7} + 6 a^{6} - 3 a^{5} + 9 a^{4} - 22 a^{3} + 20 a^{2} - 24 a + 17 \), \( 46 a^{8} - 74 a^{7} + 339 a^{6} - 600 a^{5} + 1049 a^{4} - 1413 a^{3} + 1260 a^{2} - 944 a + 417 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1103.79064185 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$PSU(3,2):C_2$ (as 9T19):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 144 |
| The 9 conjugacy class representatives for $(C_3^2:C_8):C_2$ |
| Character table for $(C_3^2:C_8):C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.8.31.173 | $x^{8} + 46$ | $8$ | $1$ | $31$ | $QD_{16}$ | $[2, 3, 4, 5]$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_7.2t1.1c1 | $1$ | $ 2^{2} \cdot 7 $ | $x^{2} - 7$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_7.2t1.1c1 | $1$ | $ 2^{3} \cdot 7 $ | $x^{2} - 14$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e8_7.4t3.5c1 | $2$ | $ 2^{8} \cdot 7 $ | $x^{4} - 8 x^{2} + 14$ | $D_{4}$ (as 4T3) | $1$ | $2$ | |
| 2.2e10_7.8t8.4c1 | $2$ | $ 2^{10} \cdot 7 $ | $x^{8} + 16 x^{6} + 80 x^{4} + 128 x^{2} + 56$ | $QD_{16}$ (as 8T8) | $0$ | $-2$ | |
| 2.2e10_7.8t8.4c2 | $2$ | $ 2^{10} \cdot 7 $ | $x^{8} + 16 x^{6} + 80 x^{4} + 128 x^{2} + 56$ | $QD_{16}$ (as 8T8) | $0$ | $-2$ | |
| 8.2e33_7e5.18t68.1c1 | $8$ | $ 2^{33} \cdot 7^{5}$ | $x^{9} - 2 x^{8} + 8 x^{7} - 16 x^{6} + 28 x^{5} - 40 x^{4} + 40 x^{3} - 32 x^{2} + 18 x - 4$ | $(C_3^2:C_8):C_2$ (as 9T19) | $1$ | $0$ | |
| * | 8.2e31_7e3.9t19.1c1 | $8$ | $ 2^{31} \cdot 7^{3}$ | $x^{9} - 2 x^{8} + 8 x^{7} - 16 x^{6} + 28 x^{5} - 40 x^{4} + 40 x^{3} - 32 x^{2} + 18 x - 4$ | $(C_3^2:C_8):C_2$ (as 9T19) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.