Properties

Label 9.1.6975449726976.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{18}\cdot 3^{7}\cdot 23^{3}$
Root discriminant $26.73$
Ramified primes $2, 3, 23$
Class number $1$
Class group Trivial
Galois group $(C_3^2:C_8):C_2$ (as 9T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-32, 24, 48, 24, -48, -24, -24, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 24*x^6 - 24*x^5 - 48*x^4 + 24*x^3 + 48*x^2 + 24*x - 32)
 
gp: K = bnfinit(x^9 - 24*x^6 - 24*x^5 - 48*x^4 + 24*x^3 + 48*x^2 + 24*x - 32, 1)
 

Normalized defining polynomial

\( x^{9} - 24 x^{6} - 24 x^{5} - 48 x^{4} + 24 x^{3} + 48 x^{2} + 24 x - 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6975449726976=2^{18}\cdot 3^{7}\cdot 23^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{6} + \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{7} - \frac{1}{6} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{72} a^{8} + \frac{1}{36} a^{7} - \frac{1}{36} a^{6} - \frac{1}{18} a^{5} + \frac{1}{18} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} - \frac{2}{9} a - \frac{4}{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4697.22872473 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$PSU(3,2):C_2$ (as 9T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 9 conjugacy class representatives for $(C_3^2:C_8):C_2$
Character table for $(C_3^2:C_8):C_2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ R ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.18.73$x^{8} + 56 x^{4} + 80$$8$$1$$18$$QD_{16}$$[2, 2, 3]^{2}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.8.7.2$x^{8} - 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
$23$23.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
23.6.3.1$x^{6} - 46 x^{4} + 529 x^{2} - 194672$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_3.2t1.1c1$1$ $ 2^{2} \cdot 3 $ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
1.2e2_23.2t1.1c1$1$ $ 2^{2} \cdot 23 $ $x^{2} - 23$ $C_2$ (as 2T1) $1$ $1$
1.3_23.2t1.1c1$1$ $ 3 \cdot 23 $ $x^{2} - x - 17$ $C_2$ (as 2T1) $1$ $1$
2.2e4_3e2_23.4t3.3c1$2$ $ 2^{4} \cdot 3^{2} \cdot 23 $ $x^{4} - 2 x^{3} - 12 x^{2} - 2 x + 13$ $D_{4}$ (as 4T3) $1$ $2$
2.2e6_3e2_23.8t8.2c1$2$ $ 2^{6} \cdot 3^{2} \cdot 23 $ $x^{8} + 24 x^{6} + 114 x^{4} + 168 x^{2} + 69$ $QD_{16}$ (as 8T8) $0$ $-2$
2.2e6_3e2_23.8t8.2c2$2$ $ 2^{6} \cdot 3^{2} \cdot 23 $ $x^{8} + 24 x^{6} + 114 x^{4} + 168 x^{2} + 69$ $QD_{16}$ (as 8T8) $0$ $-2$
8.2e18_3e7_23e5.18t68.1c1$8$ $ 2^{18} \cdot 3^{7} \cdot 23^{5}$ $x^{9} - 24 x^{6} - 24 x^{5} - 48 x^{4} + 24 x^{3} + 48 x^{2} + 24 x - 32$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $0$
* 8.2e18_3e7_23e3.9t19.1c1$8$ $ 2^{18} \cdot 3^{7} \cdot 23^{3}$ $x^{9} - 24 x^{6} - 24 x^{5} - 48 x^{4} + 24 x^{3} + 48 x^{2} + 24 x - 32$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.