Properties

Label 9.1.6439662447201.1
Degree $9$
Signature $[1, 4]$
Discriminant $3^{12}\cdot 59^{4}$
Root discriminant $26.50$
Ramified primes $3, 59$
Class number $1$
Class group Trivial
Galois group $C_3^2 : C_6$ (as 9T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-92, 93, 9, 20, -45, 18, -8, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 8*x^6 + 18*x^5 - 45*x^4 + 20*x^3 + 9*x^2 + 93*x - 92)
 
gp: K = bnfinit(x^9 - 8*x^6 + 18*x^5 - 45*x^4 + 20*x^3 + 9*x^2 + 93*x - 92, 1)
 

Normalized defining polynomial

\( x^{9} - 8 x^{6} + 18 x^{5} - 45 x^{4} + 20 x^{3} + 9 x^{2} + 93 x - 92 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6439662447201=3^{12}\cdot 59^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{169846} a^{8} - \frac{17571}{169846} a^{7} - \frac{39987}{169846} a^{6} - \frac{41333}{169846} a^{5} + \frac{665}{169846} a^{4} + \frac{17307}{84923} a^{3} + \frac{7976}{84923} a^{2} - \frac{46683}{169846} a + \frac{40376}{84923}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1018.10945112 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$He_3:C_2$ (as 9T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 54
The 10 conjugacy class representatives for $C_3^2 : C_6$
Character table for $C_3^2 : C_6$

Intermediate fields

3.1.59.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ R ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.12.4$x^{9} + 6 x^{6} + 18 x^{5} + 36 x^{3} + 27$$3$$3$$12$$C_3^2:C_3$$[2, 2]^{3}$
$59$$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.6.3.2$x^{6} - 3481 x^{2} + 3491443$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.59.2t1.1c1$1$ $ 59 $ $x^{2} - x + 15$ $C_2$ (as 2T1) $1$ $-1$
1.3e2.3t1.1c1$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2_59.6t1.2c1$1$ $ 3^{2} \cdot 59 $ $x^{6} - 3 x^{5} + 42 x^{4} - 77 x^{3} + 717 x^{2} - 774 x + 4863$ $C_6$ (as 6T1) $0$ $-1$
1.3e2.3t1.1c2$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2_59.6t1.2c2$1$ $ 3^{2} \cdot 59 $ $x^{6} - 3 x^{5} + 42 x^{4} - 77 x^{3} + 717 x^{2} - 774 x + 4863$ $C_6$ (as 6T1) $0$ $-1$
* 2.59.3t2.1c1$2$ $ 59 $ $x^{3} + 2 x - 1$ $S_3$ (as 3T2) $1$ $0$
2.3e4_59.6t5.2c1$2$ $ 3^{4} \cdot 59 $ $x^{6} + 12 x^{4} - 9 x^{3} + 36 x^{2} - 54 x + 35$ $S_3\times C_3$ (as 6T5) $0$ $0$
2.3e4_59.6t5.2c2$2$ $ 3^{4} \cdot 59 $ $x^{6} + 12 x^{4} - 9 x^{3} + 36 x^{2} - 54 x + 35$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 6.3e12_59e3.9t13.1c1$6$ $ 3^{12} \cdot 59^{3}$ $x^{9} - 8 x^{6} + 18 x^{5} - 45 x^{4} + 20 x^{3} + 9 x^{2} + 93 x - 92$ $C_3^2 : C_6$ (as 9T11) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.