Properties

Label 9.1.502729509987...8896.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{13}\cdot 3^{3}\cdot 7^{7}\cdot 13^{6}\cdot 83^{3}$
Root discriminant $430.01$
Ramified primes $2, 3, 7, 13, 83$
Class number $2592$ (GRH)
Class group $[6, 6, 72]$ (GRH)
Galois group $S_3^2$ (as 9T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13907244, -6773468, 229684, 205304, -26062, 8982, -239, 135, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 135*x^7 - 239*x^6 + 8982*x^5 - 26062*x^4 + 205304*x^3 + 229684*x^2 - 6773468*x + 13907244)
 
gp: K = bnfinit(x^9 - 3*x^8 + 135*x^7 - 239*x^6 + 8982*x^5 - 26062*x^4 + 205304*x^3 + 229684*x^2 - 6773468*x + 13907244, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 135 x^{7} - 239 x^{6} + 8982 x^{5} - 26062 x^{4} + 205304 x^{3} + 229684 x^{2} - 6773468 x + 13907244 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(502729509987688558288896=2^{13}\cdot 3^{3}\cdot 7^{7}\cdot 13^{6}\cdot 83^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $430.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 13, 83$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{42} a^{6} + \frac{5}{14} a^{5} + \frac{17}{42} a^{4} - \frac{1}{6} a^{3} - \frac{1}{21} a^{2} + \frac{1}{21} a - \frac{1}{7}$, $\frac{1}{210} a^{7} - \frac{1}{210} a^{6} - \frac{11}{42} a^{5} + \frac{33}{70} a^{4} - \frac{10}{21} a^{3} + \frac{38}{105} a^{2} + \frac{23}{105} a - \frac{12}{35}$, $\frac{1}{507925943377087830} a^{8} + \frac{200986994428832}{253962971688543915} a^{7} - \frac{583093929610055}{50792594337708783} a^{6} + \frac{10267932818801342}{253962971688543915} a^{5} - \frac{48855409360741471}{101585188675417566} a^{4} + \frac{41091219165096278}{253962971688543915} a^{3} + \frac{115892770893785513}{253962971688543915} a^{2} - \frac{27255757708346311}{253962971688543915} a + \frac{5632466469163669}{16930864779236261}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}\times C_{6}\times C_{72}$, which has order $2592$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 714424.0100708626 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 9T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

3.1.99372.1, 3.1.4648.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.11.13$x^{6} + 10$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.3.2.1$x^{3} + 14$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.5.3$x^{6} - 112$$6$$1$$5$$C_6$$[\ ]_{6}$
$13$13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$83$$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.1.1$x^{2} - 83$$2$$1$$1$$C_2$$[\ ]_{2}$
83.4.2.1$x^{4} + 249 x^{2} + 27556$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$