Normalized defining polynomial
\( x^{9} - x^{8} + 6 x^{7} - 15 x^{6} + 35 x^{5} + 48 x^{4} + 52 x^{3} - 95 x^{2} + 114 x - 209 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(458566205677281=3^{6}\cdot 13^{6}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{5}{16}$, $\frac{1}{1704224} a^{8} + \frac{9407}{852112} a^{7} + \frac{36477}{426056} a^{6} - \frac{32831}{1704224} a^{5} - \frac{286557}{852112} a^{4} - \frac{257307}{852112} a^{3} - \frac{8941}{44848} a^{2} - \frac{139}{89696} a - \frac{36519}{89696}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6921.85986951 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$ASL(2,3)$ (as 9T23):
| A solvable group of order 216 |
| The 10 conjugacy class representatives for $(C_3^2:Q_8):C_3$ |
| Character table for $(C_3^2:Q_8):C_3$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| $19$ | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |