Properties

Label 9.1.431244000000.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{8}\cdot 3^{4}\cdot 5^{6}\cdot 11^{3}$
Root discriminant $19.62$
Ramified primes $2, 3, 5, 11$
Class number $1$
Class group Trivial
Galois group $S_3\wr S_3$ (as 9T31)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-40, 40, -40, 48, -37, 28, -18, 9, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 9*x^7 - 18*x^6 + 28*x^5 - 37*x^4 + 48*x^3 - 40*x^2 + 40*x - 40)
 
gp: K = bnfinit(x^9 - 3*x^8 + 9*x^7 - 18*x^6 + 28*x^5 - 37*x^4 + 48*x^3 - 40*x^2 + 40*x - 40, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(431244000000=2^{8}\cdot 3^{4}\cdot 5^{6}\cdot 11^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2428} a^{8} + \frac{157}{2428} a^{7} - \frac{365}{2428} a^{6} - \frac{73}{1214} a^{5} - \frac{133}{1214} a^{4} - \frac{107}{2428} a^{3} + \frac{569}{1214} a^{2} - \frac{15}{607} a + \frac{38}{607}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1003.54261031 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr S_3$ (as 9T31):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$ is not computed

Intermediate fields

3.1.3300.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.9.0.1}{9} }$ R ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.9.0.1}{9} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.9.0.1}{9} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.4.6.8$x^{4} + 2 x^{3} + 2$$4$$1$$6$$D_{4}$$[2, 2]^{2}$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.4.3.2$x^{4} - 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$5$5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.6.3.2$x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_3_11.2t1.1c1$1$ $ 2^{2} \cdot 3 \cdot 11 $ $x^{2} + 33$ $C_2$ (as 2T1) $1$ $-1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_11.2t1.1c1$1$ $ 2^{2} \cdot 11 $ $x^{2} - 11$ $C_2$ (as 2T1) $1$ $1$
2.2e2_3_5e2_11.6t3.13c1$2$ $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 $ $x^{6} - 40 x^{3} + 125$ $D_{6}$ (as 6T3) $1$ $0$
* 2.2e2_3_5e2_11.3t2.1c1$2$ $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 $ $x^{3} - x^{2} + 12 x + 12$ $S_3$ (as 3T2) $1$ $0$
3.2e4_3e3_5e2_11.4t5.1c1$3$ $ 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 11 $ $x^{4} - 6 x^{2} - 12 x + 12$ $S_4$ (as 4T5) $1$ $1$
3.2e6_3e3_5e2_11e2.6t11.1c1$3$ $ 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 11^{2}$ $x^{6} - x^{4} + 12 x^{2} + 12$ $S_4\times C_2$ (as 6T11) $1$ $1$
3.2e6_3e2_5e2_11e2.6t8.6c1$3$ $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ $x^{4} - 6 x^{2} - 12 x + 12$ $S_4$ (as 4T5) $1$ $-1$
3.2e4_3e2_5e2_11.6t11.3c1$3$ $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 $ $x^{6} - x^{4} + 12 x^{2} + 12$ $S_4\times C_2$ (as 6T11) $1$ $-1$
* 6.2e6_3e3_5e4_11e2.9t31.1c1$6$ $ 2^{6} \cdot 3^{3} \cdot 5^{4} \cdot 11^{2}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e10_3e3_5e4_11e4.18t303.1c1$6$ $ 2^{10} \cdot 3^{3} \cdot 5^{4} \cdot 11^{4}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e10_3e5_5e4_11e4.18t320.1c1$6$ $ 2^{10} \cdot 3^{5} \cdot 5^{4} \cdot 11^{4}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
6.2e6_3e5_5e4_11e2.18t312.1c1$6$ $ 2^{6} \cdot 3^{5} \cdot 5^{4} \cdot 11^{2}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
8.2e16_3e6_5e4_11e6.24t2895.1c1$8$ $ 2^{16} \cdot 3^{6} \cdot 5^{4} \cdot 11^{6}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
8.2e8_3e6_5e4_11e2.12t213.1c1$8$ $ 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 11^{2}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.2e20_3e9_5e8_11e7.36t2305.1c1$12$ $ 2^{20} \cdot 3^{9} \cdot 5^{8} \cdot 11^{7}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $2$
12.2e16_3e9_5e8_11e5.36t2215.1c1$12$ $ 2^{16} \cdot 3^{9} \cdot 5^{8} \cdot 11^{5}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.2e20_3e10_5e8_11e6.36t2210.1c1$12$ $ 2^{20} \cdot 3^{10} \cdot 5^{8} \cdot 11^{6}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.2e20_3e9_5e8_11e7.36t2218.1c1$12$ $ 2^{20} \cdot 3^{9} \cdot 5^{8} \cdot 11^{7}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.2e16_3e9_5e8_11e5.18t315.1c1$12$ $ 2^{16} \cdot 3^{9} \cdot 5^{8} \cdot 11^{5}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $2$
16.2e24_3e12_5e12_11e8.24t2912.1c1$16$ $ 2^{24} \cdot 3^{12} \cdot 5^{12} \cdot 11^{8}$ $x^{9} - 3 x^{8} + 9 x^{7} - 18 x^{6} + 28 x^{5} - 37 x^{4} + 48 x^{3} - 40 x^{2} + 40 x - 40$ $S_3\wr S_3$ (as 9T31) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.