Normalized defining polynomial
\( x^{9} - 3x^{8} + 4x^{7} + 18x^{6} + 10x^{5} - 320x^{4} + 316x^{3} + 1350x^{2} - 7019x + 9995 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(3756492407660544\) \(\medspace = 2^{13}\cdot 3^{3}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(53.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{13/6}3^{1/2}19^{8/9}\approx 106.52760230477175$ | ||
Ramified primes: | \(2\), \(3\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{24}a^{6}+\frac{1}{12}a^{5}-\frac{1}{24}a^{4}+\frac{1}{12}a^{3}+\frac{1}{24}a^{2}-\frac{1}{6}a+\frac{7}{24}$, $\frac{1}{48}a^{7}-\frac{1}{48}a^{6}+\frac{5}{48}a^{5}-\frac{7}{48}a^{4}-\frac{5}{48}a^{3}+\frac{17}{48}a^{2}-\frac{17}{48}a-\frac{3}{16}$, $\frac{1}{6666240}a^{8}+\frac{603}{222208}a^{7}+\frac{2407}{158720}a^{6}+\frac{503}{10416}a^{5}-\frac{12863}{666624}a^{4}-\frac{78515}{666624}a^{3}-\frac{1369397}{3333120}a^{2}-\frac{431383}{1666560}a+\frac{366613}{1333248}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{293}{277760}a^{8}-\frac{65}{83328}a^{7}-\frac{1541}{59520}a^{6}+\frac{433}{2604}a^{5}-\frac{29521}{83328}a^{4}-\frac{26045}{83328}a^{3}+\frac{1153477}{416640}a^{2}-\frac{1310537}{208320}a+\frac{341129}{55552}$, $\frac{109}{222208}a^{8}-\frac{143}{111104}a^{7}-\frac{559}{15872}a^{6}+\frac{8}{217}a^{5}+\frac{3105}{111104}a^{4}+\frac{26029}{111104}a^{3}-\frac{204369}{111104}a^{2}+\frac{385941}{55552}a-\frac{1544139}{222208}$, $\frac{23019}{1111040}a^{8}+\frac{1553}{333312}a^{7}-\frac{17803}{238080}a^{6}-\frac{85}{2604}a^{5}+\frac{301825}{333312}a^{4}-\frac{621235}{333312}a^{3}-\frac{8889589}{1666560}a^{2}+\frac{16375049}{833280}a-\frac{5394873}{222208}$, $\frac{1951589}{333312}a^{8}-\frac{103389}{55552}a^{7}-\frac{615287}{23808}a^{6}+\frac{420635}{5208}a^{5}+\frac{24437939}{55552}a^{4}-\frac{78772009}{55552}a^{3}-\frac{265556803}{55552}a^{2}+\frac{646031453}{83328}a+\frac{787403151}{111104}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 19868.0877124 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 19868.0877124 \cdot 9}{2\cdot\sqrt{3756492407660544}}\cr\approx \mathstrut & 4.54701926021 \end{aligned}\] (assuming GRH)
Galois group
$S_3\wr S_3$ (as 9T31):
A solvable group of order 1296 |
The 22 conjugacy class representatives for $S_3\wr S_3$ |
Character table for $S_3\wr S_3$ |
Intermediate fields
3.1.2888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
\(3\) | 3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
3.6.3.2 | $x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |