# Properties

 Label 9.1.35028793.1 Degree $9$ Signature $[1, 4]$ Discriminant $35028793$ Root discriminant $6.89$ Ramified primes $23, 2879$ Class number $1$ Class group trivial Galois group $S_3\wr S_3$ (as 9T31)

# Related objects

Show commands for: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 + 4*x^7 - 7*x^6 + 10*x^5 - 11*x^4 + 11*x^3 - 8*x^2 + 4*x - 1)

gp: K = bnfinit(x^9 - 2*x^8 + 4*x^7 - 7*x^6 + 10*x^5 - 11*x^4 + 11*x^3 - 8*x^2 + 4*x - 1, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, -8, 11, -11, 10, -7, 4, -2, 1]);

$$x^{9} - 2 x^{8} + 4 x^{7} - 7 x^{6} + 10 x^{5} - 11 x^{4} + 11 x^{3} - 8 x^{2} + 4 x - 1$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $9$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[1, 4]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$35028793$$$$\medspace = 23^{3}\cdot 2879$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $6.89$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $23, 2879$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $4$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$2 a^{8} - 3 a^{7} + 6 a^{6} - 10 a^{5} + 14 a^{4} - 13 a^{3} + 13 a^{2} - 8 a + 3$$,  $$a^{8} + 2 a^{6} - 2 a^{5} + 2 a^{4} - a^{3} + 2 a^{2} + a$$,  $$a^{8} - a^{7} + 3 a^{6} - 4 a^{5} + 6 a^{4} - 6 a^{3} + 6 a^{2} - 3 a + 2$$,  $$a^{8} - a^{7} + 3 a^{6} - 5 a^{5} + 6 a^{4} - 7 a^{3} + 7 a^{2} - 4 a + 2$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$0.760652964324$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{1}\cdot(2\pi)^{4}\cdot 0.760652964324 \cdot 1}{2\sqrt{35028793}}\approx 0.2003057650696$

## Galois group

$S_3\wr S_3$ (as 9T31):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A solvable group of order 1296 The 22 conjugacy class representatives for $S_3\wr S_3$ Character table for $S_3\wr S_3$ is not computed

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 12 sibling: data not computed Degree 18 siblings: data not computed Degree 24 siblings: data not computed Degree 27 siblings: data not computed Degree 36 siblings: data not computed

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ R ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.9.0.1}{9} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.9.0.1}{9} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$$\Q_{23}$$x + 2$$1$$1$$0Trivial[\ ] 23.2.0.1x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
2879Data not computed