Normalized defining polynomial
\( x^{9} - x^{8} + 12 x^{7} - 28 x^{6} + 50 x^{5} - 82 x^{4} + 132 x^{3} - 84 x^{2} + 121 x - 25 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33554432000000=2^{31}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{20} a^{5} - \frac{3}{20} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{20} a + \frac{1}{4}$, $\frac{1}{20} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{2}{5} a - \frac{1}{4}$, $\frac{1}{20} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{2}{5} a^{2} - \frac{1}{4}$, $\frac{1}{140} a^{8} + \frac{1}{140} a^{7} + \frac{3}{28} a^{4} + \frac{53}{140} a^{3} + \frac{1}{5} a^{2} + \frac{3}{14}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7776.97162299 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:C_8$ |
| Character table for $C_3^2:C_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.8.31.7 | $x^{8} + 28 x^{4} + 16 x^{3} + 50$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.8.6.4 | $x^{8} - 5 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e4_5.4t1.3c1 | $1$ | $ 2^{4} \cdot 5 $ | $x^{4} - 20 x^{2} + 50$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e4_5.4t1.3c2 | $1$ | $ 2^{4} \cdot 5 $ | $x^{4} - 20 x^{2} + 50$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e5_5.8t1.2c1 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 50$ | $C_8$ (as 8T1) | $0$ | $-1$ | |
| 1.2e5_5.8t1.2c2 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 50$ | $C_8$ (as 8T1) | $0$ | $-1$ | |
| 1.2e5_5.8t1.2c3 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 50$ | $C_8$ (as 8T1) | $0$ | $-1$ | |
| 1.2e5_5.8t1.2c4 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 50$ | $C_8$ (as 8T1) | $0$ | $-1$ | |
| * | 8.2e31_5e6.9t15.1c1 | $8$ | $ 2^{31} \cdot 5^{6}$ | $x^{9} - x^{8} + 12 x^{7} - 28 x^{6} + 50 x^{5} - 82 x^{4} + 132 x^{3} - 84 x^{2} + 121 x - 25$ | $C_3^2:C_8$ (as 9T15) | $1$ | $0$ |