Properties

Label 9.1.309668264635...3264.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{10}\cdot 3^{10}\cdot 7^{6}\cdot 331^{7}$
Root discriminant $2442.74$
Ramified primes $2, 3, 7, 331$
Class number $121500$ (GRH)
Class group $[3, 3, 30, 450]$ (GRH)
Galois group $S_3^2$ (as 9T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-755633606013, 12016857987, -307183266, 292796994, -721392, 56028, -27118, -66, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 66*x^7 - 27118*x^6 + 56028*x^5 - 721392*x^4 + 292796994*x^3 - 307183266*x^2 + 12016857987*x - 755633606013)
 
gp: K = bnfinit(x^9 - 3*x^8 - 66*x^7 - 27118*x^6 + 56028*x^5 - 721392*x^4 + 292796994*x^3 - 307183266*x^2 + 12016857987*x - 755633606013, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 66 x^{7} - 27118 x^{6} + 56028 x^{5} - 721392 x^{4} + 292796994 x^{3} - 307183266 x^{2} + 12016857987 x - 755633606013 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3096682646352859575292629003264=2^{10}\cdot 3^{10}\cdot 7^{6}\cdot 331^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $2442.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 331$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{3} - \frac{1}{14} a^{2} + \frac{5}{14} a + \frac{1}{14}$, $\frac{1}{28} a^{4} + \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{13}{28}$, $\frac{1}{28} a^{5} - \frac{1}{7} a^{2} - \frac{5}{28} a - \frac{1}{7}$, $\frac{1}{389256} a^{6} - \frac{425}{64876} a^{5} - \frac{1681}{129752} a^{4} - \frac{1436}{48657} a^{3} + \frac{14997}{129752} a^{2} + \frac{24385}{64876} a + \frac{50937}{129752}$, $\frac{1}{2335536} a^{7} - \frac{1}{778512} a^{6} + \frac{6715}{778512} a^{5} + \frac{31145}{2335536} a^{4} - \frac{25451}{778512} a^{3} + \frac{43433}{778512} a^{2} + \frac{183509}{778512} a - \frac{114825}{259504}$, $\frac{1}{27230529562099362576} a^{8} - \frac{186339110977}{2269210796841613548} a^{7} - \frac{2715977393665}{4538421593683227096} a^{6} - \frac{21442533764326819}{1701908097631210161} a^{5} - \frac{3931461281598167}{567302699210403387} a^{4} + \frac{58744723937074541}{2269210796841613548} a^{3} - \frac{623700849375094751}{4538421593683227096} a^{2} - \frac{12998935121739676}{27014414248114447} a + \frac{123007248450847701}{275055854162619824}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{30}\times C_{450}$, which has order $121500$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32230075.642104913 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 9T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

3.1.194628.3, 3.1.579796812.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.8.1$x^{6} + 2 x^{3} + 2$$6$$1$$8$$D_{6}$$[2]_{3}^{2}$
$3$3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.7.4$x^{6} + 3 x^{2} + 3$$6$$1$$7$$S_3$$[3/2]_{2}$
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
331Data not computed