Normalized defining polynomial
\( x^{9} - 534x^{6} + 18915348x^{3} - 5639752 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[1, 4]$ |
| |
| Discriminant: |
\(296127458031276854378155584\)
\(\medspace = 2^{6}\cdot 3^{10}\cdot 11^{6}\cdot 89^{7}\)
|
| |
| Root discriminant: | \(873.53\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}11^{2/3}89^{5/6}\approx 1191.4658250010298$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\), \(89\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{89}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{534}a^{3}-\frac{1}{3}$, $\frac{1}{534}a^{4}-\frac{1}{3}a$, $\frac{1}{3204}a^{5}-\frac{1}{1602}a^{4}-\frac{1}{1602}a^{3}-\frac{7}{18}a^{2}-\frac{2}{9}a-\frac{2}{9}$, $\frac{1}{855468}a^{6}+\frac{2}{2403}a^{3}+\frac{4}{27}$, $\frac{1}{1710936}a^{7}+\frac{1}{2403}a^{4}-\frac{23}{54}a$, $\frac{1}{152273304}a^{8}+\frac{65}{427734}a^{5}-\frac{1337}{4806}a^{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}\times C_{1170}$, which has order $21060$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{6}\times C_{1170}$, which has order $21060$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{6344721}a^{8}-\frac{7}{71289}a^{5}+\frac{2395}{801}a^{2}+a+1$, $\frac{1}{178}a^{3}$, $\frac{2395}{25378884}a^{8}-\frac{1}{15842}a^{7}-\frac{7181}{142578}a^{5}+\frac{3}{89}a^{4}+\frac{1429801}{801}a^{2}-1194a+1$, $\frac{54\cdots 43}{50757768}a^{8}+\frac{12\cdots 59}{71289}a^{7}-\frac{66\cdots 37}{285156}a^{6}-\frac{22\cdots 65}{285156}a^{5}-\frac{11\cdots 83}{801}a^{4}-\frac{32\cdots 77}{1602}a^{3}+\frac{18\cdots 30}{801}a^{2}+\frac{38\cdots 88}{9}a+\frac{55\cdots 50}{9}$
|
| |
| Regulator: | \( 1159710.2741848961 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 1159710.2741848961 \cdot 21060}{2\cdot\sqrt{296127458031276854378155584}}\cr\approx \mathstrut & 2.21201468427798 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| 3.1.129228.2, 3.1.25877907.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | 18.0.23413622863817524481843021471523759530869600428671741952.1, 18.0.263074414200196904290371027769929882369321353131143168.1, some data not computed |
| Minimal sibling: | 6.2.7881028798989456.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | R | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.6.7a2.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(11\)
| 11.1.3.2a1.1 | $x^{3} + 11$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 11.2.3.4a1.2 | $x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 84 x + 19$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(89\)
| 89.1.3.2a1.1 | $x^{3} + 89$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 89.1.6.5a1.2 | $x^{6} + 267$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |