Normalized defining polynomial
\( x^{9} - 10 x^{6} + 46 x^{3} + 27 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2778012227169=3^{10}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17} a^{6} + \frac{2}{17} a^{3} + \frac{2}{17}$, $\frac{1}{51} a^{7} + \frac{2}{51} a^{4} + \frac{19}{51} a$, $\frac{1}{459} a^{8} - \frac{1}{153} a^{7} + \frac{1}{51} a^{6} + \frac{206}{459} a^{5} - \frac{53}{153} a^{4} + \frac{2}{51} a^{3} + \frac{19}{459} a^{2} - \frac{19}{153} a + \frac{19}{51}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{5}{153} a^{8} - \frac{41}{153} a^{5} + \frac{248}{153} a^{2} + a \), \( \frac{19}{459} a^{8} + \frac{2}{153} a^{7} - \frac{2}{51} a^{6} - \frac{217}{459} a^{5} - \frac{47}{153} a^{4} - \frac{4}{51} a^{3} + \frac{820}{459} a^{2} + \frac{38}{153} a - \frac{38}{51} \), \( \frac{4}{51} a^{8} + \frac{4}{51} a^{7} - \frac{43}{51} a^{5} - \frac{43}{51} a^{4} + \frac{229}{51} a^{2} + \frac{178}{51} a \), \( \frac{1}{17} a^{6} + \frac{2}{17} a^{3} + \frac{2}{17} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 768.851190328 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 9T11):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2 : C_6$ |
| Character table for $C_3^2 : C_6$ |
Intermediate fields
| 3.1.1083.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.6t1.1c1 | $1$ | $ 3^{2}$ | $x^{6} - x^{3} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.6t1.1c2 | $1$ | $ 3^{2}$ | $x^{6} - x^{3} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| * | 2.3_19e2.3t2.1c1 | $2$ | $ 3 \cdot 19^{2}$ | $x^{3} - x^{2} - 6 x - 12$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 2.3e4_19e2.6t5.1c1 | $2$ | $ 3^{4} \cdot 19^{2}$ | $x^{6} - 19 x^{3} + 361$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| 2.3e4_19e2.6t5.1c2 | $2$ | $ 3^{4} \cdot 19^{2}$ | $x^{6} - 19 x^{3} + 361$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| * | 6.3e9_19e4.9t13.2c1 | $6$ | $ 3^{9} \cdot 19^{4}$ | $x^{9} - 10 x^{6} + 46 x^{3} + 27$ | $C_3^2 : C_6$ (as 9T11) | $1$ | $0$ |