Normalized defining polynomial
\( x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24321026304=2^{8}\cdot 3^{6}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{12} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{24} a^{8} - \frac{1}{24} a^{6} - \frac{1}{6} a^{5} + \frac{1}{8} a^{4} + \frac{1}{3} a^{3} + \frac{1}{24} a^{2} - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94.454255671 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30):
| A solvable group of order 648 |
| The 14 conjugacy class representatives for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
| Character table for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Intermediate fields
| 3.1.76.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.19.2t1.1c1 | $1$ | $ 19 $ | $x^{2} - x + 5$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.2e2_19.3t2.1c1 | $2$ | $ 2^{2} \cdot 19 $ | $x^{3} - 2 x - 2$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e4_3e2_19e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 3^{2} \cdot 19^{2}$ | $x^{4} - 2 x^{3} + 2 x^{2} + 2 x - 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_3e2_19.4t5.1c1 | $3$ | $ 2^{4} \cdot 3^{2} \cdot 19 $ | $x^{4} - 2 x^{3} + 2 x^{2} + 2 x - 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 6.2e6_3e6_19e3.18t222.1c1 | $6$ | $ 2^{6} \cdot 3^{6} \cdot 19^{3}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| * | 6.2e6_3e6_19e3.9t30.1c1 | $6$ | $ 2^{6} \cdot 3^{6} \cdot 19^{3}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ |
| 6.2e8_3e8_19e3.36t1130.1c1 | $6$ | $ 2^{8} \cdot 3^{8} \cdot 19^{3}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 6.2e8_3e8_19e3.36t1130.1c2 | $6$ | $ 2^{8} \cdot 3^{8} \cdot 19^{3}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e10_3e12_19e4.12t177.1c1 | $8$ | $ 2^{10} \cdot 3^{12} \cdot 19^{4}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e10_3e12_19e4.12t177.2c1 | $8$ | $ 2^{10} \cdot 3^{12} \cdot 19^{4}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e8_3e12_19e4.12t178.1c1 | $8$ | $ 2^{8} \cdot 3^{12} \cdot 19^{4}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 12.2e14_3e18_19e7.36t1124.1c1 | $12$ | $ 2^{14} \cdot 3^{18} \cdot 19^{7}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $-2$ | |
| 12.2e14_3e18_19e5.18t218.1c1 | $12$ | $ 2^{14} \cdot 3^{18} \cdot 19^{5}$ | $x^{9} - x^{7} - 6 x^{6} + 3 x^{5} + 4 x^{4} + 21 x^{3} - 6 x^{2} - 4 x - 8$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $2$ |