Properties

Label 9.1.240251777951...6768.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{6}\cdot 3^{9}\cdot 13^{7}\cdot 31^{7}\cdot 73^{7}$
Root discriminant $14{,}236.64$
Ramified primes $2, 3, 13, 31, 73$
Class number $4251528$ (GRH)
Class group $[3, 3, 3, 3, 18, 18, 162]$ (GRH)
Galois group $S_3^2$ (as 9T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25539385643706, -158464296066, -2509502424, 2594285657, -2562525, -173532, 88067, 96, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 96*x^7 + 88067*x^6 - 173532*x^5 - 2562525*x^4 + 2594285657*x^3 - 2509502424*x^2 - 158464296066*x + 25539385643706)
 
gp: K = bnfinit(x^9 - 3*x^8 + 96*x^7 + 88067*x^6 - 173532*x^5 - 2562525*x^4 + 2594285657*x^3 - 2509502424*x^2 - 158464296066*x + 25539385643706, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 96 x^{7} + 88067 x^{6} - 173532 x^{5} - 2562525 x^{4} + 2594285657 x^{3} - 2509502424 x^{2} - 158464296066 x + 25539385643706 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24025177795176030015470943785840136768=2^{6}\cdot 3^{9}\cdot 13^{7}\cdot 31^{7}\cdot 73^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14{,}236.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 31, 73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{29419} a^{6} - \frac{13114}{29419} a^{5} + \frac{2273}{29419} a^{4} + \frac{8220}{29419} a^{3} + \frac{7734}{29419} a^{2} - \frac{2180}{29419} a + \frac{8013}{29419}$, $\frac{1}{29419} a^{7} + \frac{8751}{29419} a^{5} - \frac{14524}{29419} a^{4} + \frac{1046}{2263} a^{3} + \frac{14203}{29419} a^{2} - \frac{14658}{29419} a - \frac{2186}{29419}$, $\frac{1}{433705887197274113378981141} a^{8} + \frac{6561658767940896318186}{433705887197274113378981141} a^{7} - \frac{474958399546034114573}{33361991322867239490690857} a^{6} - \frac{57736129097875932645321219}{433705887197274113378981141} a^{5} - \frac{141672076853576035567159740}{433705887197274113378981141} a^{4} + \frac{77570908570591888971256685}{433705887197274113378981141} a^{3} - \frac{43936327625220616779569813}{433705887197274113378981141} a^{2} - \frac{4973379597472502665084783}{13990512490234648818676811} a + \frac{212024487003093474315142266}{433705887197274113378981141}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{18}\times C_{18}\times C_{162}$, which has order $4251528$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2089837717.6814907 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 9T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

3.1.117676.2, 3.1.23367894147.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ R ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$3$3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.6.3$x^{6} + 3 x^{4} + 9$$3$$2$$6$$D_{6}$$[3/2]_{2}^{2}$
$13$13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.5.2$x^{6} - 13$$6$$1$$5$$C_6$$[\ ]_{6}$
$31$31.3.2.2$x^{3} + 217$$3$$1$$2$$C_3$$[\ ]_{3}$
31.6.5.4$x^{6} + 217$$6$$1$$5$$C_6$$[\ ]_{6}$
$73$73.3.2.2$x^{3} + 365$$3$$1$$2$$C_3$$[\ ]_{3}$
73.6.5.3$x^{6} - 45625$$6$$1$$5$$C_6$$[\ ]_{6}$