Properties

Label 9.1.2379293284000000.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{8}\cdot 5^{6}\cdot 29^{6}$
Root discriminant $51.11$
Ramified primes $2, 5, 29$
Class number $3$
Class group $[3]$
Galois group $C_3^2:Q_8$ (as 9T14)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-400, -500, -540, -250, -26, 73, 34, -8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 4*x^8 - 8*x^7 + 34*x^6 + 73*x^5 - 26*x^4 - 250*x^3 - 540*x^2 - 500*x - 400)
 
gp: K = bnfinit(x^9 - 4*x^8 - 8*x^7 + 34*x^6 + 73*x^5 - 26*x^4 - 250*x^3 - 540*x^2 - 500*x - 400, 1)
 

Normalized defining polynomial

\( x^{9} - 4 x^{8} - 8 x^{7} + 34 x^{6} + 73 x^{5} - 26 x^{4} - 250 x^{3} - 540 x^{2} - 500 x - 400 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2379293284000000=2^{8}\cdot 5^{6}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{5} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{30} a^{6} - \frac{1}{30} a^{5} - \frac{1}{15} a^{4} - \frac{7}{30} a^{3} + \frac{3}{10} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{90} a^{7} + \frac{1}{90} a^{6} + \frac{1}{45} a^{5} + \frac{2}{45} a^{4} + \frac{13}{90} a^{3} - \frac{31}{90} a^{2} + \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{2700} a^{8} - \frac{1}{225} a^{7} - \frac{1}{1350} a^{6} - \frac{2}{135} a^{5} + \frac{71}{900} a^{4} - \frac{37}{135} a^{3} - \frac{1}{3} a^{2} + \frac{4}{27}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 30238.329668 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$PSU(3,2)$ (as 9T14):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 6 conjugacy class representatives for $C_3^2:Q_8$
Character table for $C_3^2:Q_8$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 sibling: data not computed
Degree 36 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.29.2t1.1c1$1$ $ 29 $ $x^{2} - x - 7$ $C_2$ (as 2T1) $1$ $1$
1.5_29.2t1.1c1$1$ $ 5 \cdot 29 $ $x^{2} - x - 36$ $C_2$ (as 2T1) $1$ $1$
2.2e4_5e2_29e2.8t5.1c1$2$ $ 2^{4} \cdot 5^{2} \cdot 29^{2}$ $x^{8} + 145 x^{6} + 6380 x^{4} + 105125 x^{2} + 525625$ $Q_8$ (as 8T5) $-1$ $-2$
* 8.2e8_5e6_29e6.9t14.1c1$8$ $ 2^{8} \cdot 5^{6} \cdot 29^{6}$ $x^{9} - 4 x^{8} - 8 x^{7} + 34 x^{6} + 73 x^{5} - 26 x^{4} - 250 x^{3} - 540 x^{2} - 500 x - 400$ $C_3^2:Q_8$ (as 9T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.