Normalized defining polynomial
\( x^{9} - 2x^{7} - 6x^{6} + 6x^{5} - 8x^{3} - 18x^{2} + 10x - 6 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[1, 4]$ |
| |
| Discriminant: |
\(218889236736\)
\(\medspace = 2^{8}\cdot 3^{8}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(18.20\) |
| |
| Galois root discriminant: | $2^{8/9}3^{4/3}19^{1/2}\approx 34.92373561548968$ | ||
| Ramified primes: |
\(2\), \(3\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}+\frac{1}{3}a$, $\frac{1}{2049}a^{8}-\frac{139}{2049}a^{7}+\frac{65}{683}a^{6}-\frac{158}{683}a^{5}+\frac{108}{683}a^{4}+\frac{14}{683}a^{3}+\frac{301}{2049}a^{2}-\frac{877}{2049}a+\frac{113}{683}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{250}{2049}a^{8}+\frac{83}{2049}a^{7}-\frac{142}{683}a^{6}-\frac{569}{683}a^{5}+\frac{363}{683}a^{4}+\frac{85}{683}a^{3}-\frac{2612}{2049}a^{2}-\frac{6154}{2049}a+\frac{247}{683}$, $\frac{83}{2049}a^{8}+\frac{74}{2049}a^{7}-\frac{69}{683}a^{6}-\frac{137}{683}a^{5}+\frac{85}{683}a^{4}-\frac{204}{683}a^{3}-\frac{1654}{2049}a^{2}+\frac{290}{2049}a-\frac{183}{683}$, $\frac{14}{683}a^{8}+\frac{103}{683}a^{7}-\frac{2}{683}a^{6}-\frac{489}{683}a^{5}-\frac{245}{683}a^{4}+\frac{588}{683}a^{3}+\frac{116}{683}a^{2}-\frac{2033}{683}a-\frac{35}{683}$, $\frac{45}{683}a^{8}-\frac{108}{683}a^{7}-\frac{104}{683}a^{6}-\frac{157}{683}a^{5}+\frac{237}{683}a^{4}-\frac{159}{683}a^{3}-\frac{115}{683}a^{2}-\frac{534}{683}a+\frac{229}{683}$
|
| |
| Regulator: | \( 273.038407353 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 273.038407353 \cdot 1}{2\cdot\sqrt{218889236736}}\cr\approx \mathstrut & 0.909559285853 \end{aligned}\]
Galois group
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $(C_9:C_3):C_2$ |
| Character table for $(C_9:C_3):C_2$ |
Intermediate fields
| 3.1.76.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 27 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.9.0.1}{9} }$ | ${\href{/padicField/7.9.0.1}{9} }$ | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | R | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.9.0.1}{9} }$ | ${\href{/padicField/47.9.0.1}{9} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.9.8a1.1 | $x^{9} + 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $$[\ ]_{9}^{6}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.3.8a2.1 | $x^{6} + 6 x^{5} + 24 x^{4} + 56 x^{3} + 84 x^{2} + 72 x + 35$ | $3$ | $2$ | $8$ | $C_6$ | $$[2]^{2}$$ | |
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *54 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.171.6t1.f.a | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.171.6t1.f.b | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| *54 | 2.76.3t2.a.a | $2$ | $ 2^{2} \cdot 19 $ | 3.1.76.1 | $S_3$ (as 3T2) | $1$ | $0$ |
| 2.6156.6t5.a.a | $2$ | $ 2^{2} \cdot 3^{4} \cdot 19 $ | 6.0.720030384.6 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| 2.6156.6t5.a.b | $2$ | $ 2^{2} \cdot 3^{4} \cdot 19 $ | 6.0.720030384.6 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| *54 | 6.2880121536.9t10.a.a | $6$ | $ 2^{6} \cdot 3^{8} \cdot 19^{3}$ | 9.1.218889236736.1 | $(C_9:C_3):C_2$ (as 9T10) | $1$ | $0$ |