Normalized defining polynomial
\( x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21257640000=2^{6}\cdot 3^{12}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{1}{5} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{2}{5}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57.7313004153 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30):
| A solvable group of order 648 |
| The 14 conjugacy class representatives for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
| Character table for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ |
Intermediate fields
| 3.1.135.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.9.12.23 | $x^{9} + 6 x^{4} + 3 x^{3} + 3$ | $9$ | $1$ | $12$ | $C_3^2 : C_6$ | $[3/2, 3/2]_{2}^{3}$ |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_5.2t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{2} - x + 4$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.3e3_5.3t2.1c1 | $2$ | $ 3^{3} \cdot 5 $ | $x^{3} + 3 x - 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e6_3e4_5e2.6t8.9c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 5^{2}$ | $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 11$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_3e3_5e3.4t5.2c1 | $3$ | $ 2^{6} \cdot 3^{3} \cdot 5^{3}$ | $x^{4} - 2 x^{3} - 6 x^{2} + 2 x + 11$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 6.2e6_3e9_5e5.18t222.1c1 | $6$ | $ 2^{6} \cdot 3^{9} \cdot 5^{5}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| * | 6.2e6_3e9_5e3.9t30.1c1 | $6$ | $ 2^{6} \cdot 3^{9} \cdot 5^{3}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ |
| 6.2e12_3e9_5e5.36t1121.1c1 | $6$ | $ 2^{12} \cdot 3^{9} \cdot 5^{5}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 6.2e12_3e9_5e5.36t1121.1c2 | $6$ | $ 2^{12} \cdot 3^{9} \cdot 5^{5}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e12_3e12_5e6.12t177.3c1 | $8$ | $ 2^{12} \cdot 3^{12} \cdot 5^{6}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e12_3e12_5e6.12t177.4c1 | $8$ | $ 2^{12} \cdot 3^{12} \cdot 5^{6}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 8.2e12_3e10_5e6.12t178.1c1 | $8$ | $ 2^{12} \cdot 3^{10} \cdot 5^{6}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $0$ | |
| 12.2e18_3e17_5e9.36t1123.1c1 | $12$ | $ 2^{18} \cdot 3^{17} \cdot 5^{9}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $-2$ | |
| 12.2e18_3e15_5e9.18t218.1c1 | $12$ | $ 2^{18} \cdot 3^{15} \cdot 5^{9}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 9 x^{5} - 6 x^{4} + 12 x^{3} - 9 x^{2} + 9 x - 3$ | $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T30) | $1$ | $2$ |