Normalized defining polynomial
\( x^{9} - 6 x^{6} + 12 x^{3} + 64 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2008387814976=2^{6}\cdot 3^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{6} + \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{24} a^{7} + \frac{1}{12} a^{4} + \frac{1}{6} a$, $\frac{1}{48} a^{8} + \frac{1}{24} a^{5} - \frac{5}{12} a^{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{48} a^{8} + \frac{1}{24} a^{5} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} + a + 1 \), \( \frac{1}{2} a^{3} + 1 \), \( \frac{1}{16} a^{8} - \frac{1}{24} a^{7} - \frac{3}{8} a^{5} - \frac{1}{12} a^{4} + \frac{1}{2} a^{3} + \frac{3}{4} a^{2} + \frac{5}{6} a - 1 \), \( \frac{1}{48} a^{8} - \frac{1}{24} a^{7} + \frac{1}{24} a^{5} - \frac{1}{12} a^{4} + \frac{7}{12} a^{2} - \frac{7}{6} a + 1 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 986.51198627 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 9T11):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2 : C_6$ |
| Character table for $C_3^2 : C_6$ |
Intermediate fields
| 3.1.243.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.22.46 | $x^{9} + 18 x^{5} + 3$ | $9$ | $1$ | $22$ | $C_3^2 : C_6$ | $[2, 5/2, 17/6]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.6t1.1c1 | $1$ | $ 3^{2}$ | $x^{6} - x^{3} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.6t1.1c2 | $1$ | $ 3^{2}$ | $x^{6} - x^{3} + 1$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| * | 2.3e5.3t2.1c1 | $2$ | $ 3^{5}$ | $x^{3} - 3$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 2.3e5.6t5.1c1 | $2$ | $ 3^{5}$ | $x^{6} - 3 x^{3} + 3$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| 2.3e5.6t5.1c2 | $2$ | $ 3^{5}$ | $x^{6} - 3 x^{3} + 3$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ | |
| * | 6.2e6_3e17.9t13.2c1 | $6$ | $ 2^{6} \cdot 3^{17}$ | $x^{9} - 6 x^{6} + 12 x^{3} + 64$ | $C_3^2 : C_6$ (as 9T11) | $1$ | $0$ |