Normalized defining polynomial
\( x^{9} + 342 x^{7} - 20559 x^{6} + 38988 x^{5} + 2351934 x^{4} + 143854347 x^{3} - 267184764 x^{2} + \cdots - 332006485861 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[1, 4]$ |
| |
| Discriminant: |
\(194731833464812587366907938019256832\)
\(\medspace = 2^{9}\cdot 3^{19}\cdot 2287^{7}\)
|
| |
| Root discriminant: | \(8337.74\) |
| |
| Galois root discriminant: | $2^{3/2}3^{13/6}2287^{5/6}\approx 19261.76954796617$ | ||
| Ramified primes: |
\(2\), \(3\), \(2287\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{13722}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{9}a^{4}-\frac{1}{9}a^{3}-\frac{1}{3}a^{2}-\frac{1}{9}a+\frac{4}{9}$, $\frac{1}{9}a^{5}-\frac{1}{9}a^{3}-\frac{4}{9}a^{2}+\frac{1}{3}a+\frac{1}{9}$, $\frac{1}{123498}a^{6}-\frac{107}{2287}a^{5}+\frac{19}{20583}a^{4}+\frac{6839}{61749}a^{3}-\frac{856}{2287}a^{2}-\frac{304}{20583}a+\frac{47899}{123498}$, $\frac{1}{370494}a^{7}-\frac{1}{370494}a^{6}+\frac{3326}{61749}a^{5}-\frac{6922}{185247}a^{4}+\frac{14458}{185247}a^{3}-\frac{8153}{61749}a^{2}-\frac{5741}{370494}a-\frac{101383}{370494}$, $\frac{1}{25\cdots 22}a^{8}-\frac{339306459274595}{25\cdots 22}a^{7}+\frac{347197696429343}{12\cdots 61}a^{6}-\frac{58\cdots 15}{12\cdots 61}a^{5}-\frac{45\cdots 05}{12\cdots 61}a^{4}+\frac{14\cdots 60}{12\cdots 61}a^{3}+\frac{36\cdots 19}{25\cdots 22}a^{2}+\frac{87\cdots 87}{25\cdots 22}a+\frac{78\cdots 81}{12\cdots 61}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}\times C_{6}\times C_{54}$, which has order $5832$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{6}\times C_{6}\times C_{54}$, which has order $5832$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1279258081123}{42\cdots 87}a^{8}+\frac{21531690966268}{42\cdots 87}a^{7}+\frac{297189793571680}{42\cdots 87}a^{6}-\frac{702219929598758}{42\cdots 87}a^{5}-\frac{50\cdots 18}{42\cdots 87}a^{4}+\frac{12\cdots 36}{42\cdots 87}a^{3}-\frac{51\cdots 93}{42\cdots 87}a^{2}+\frac{25\cdots 22}{42\cdots 87}a-\frac{99\cdots 97}{42\cdots 87}$, $\frac{91\cdots 23}{42\cdots 87}a^{8}-\frac{34\cdots 24}{42\cdots 87}a^{7}+\frac{64\cdots 42}{42\cdots 87}a^{6}-\frac{24\cdots 74}{42\cdots 87}a^{5}+\frac{62\cdots 48}{42\cdots 87}a^{4}-\frac{15\cdots 44}{42\cdots 87}a^{3}-\frac{10\cdots 13}{42\cdots 87}a^{2}-\frac{15\cdots 18}{42\cdots 87}a+\frac{15\cdots 73}{42\cdots 87}$, $\frac{51\cdots 62}{42\cdots 87}a^{8}-\frac{35\cdots 80}{14\cdots 29}a^{7}+\frac{25\cdots 87}{42\cdots 87}a^{6}-\frac{10\cdots 09}{42\cdots 87}a^{5}+\frac{64\cdots 12}{14\cdots 29}a^{4}+\frac{80\cdots 67}{42\cdots 87}a^{3}-\frac{32\cdots 23}{42\cdots 87}a^{2}-\frac{12\cdots 60}{15\cdots 81}a+\frac{25\cdots 97}{42\cdots 87}$, $\frac{18\cdots 89}{42\cdots 87}a^{8}-\frac{78\cdots 06}{14\cdots 29}a^{7}+\frac{84\cdots 87}{42\cdots 87}a^{6}-\frac{46\cdots 12}{42\cdots 87}a^{5}+\frac{23\cdots 95}{15\cdots 81}a^{4}-\frac{14\cdots 85}{42\cdots 87}a^{3}+\frac{23\cdots 37}{42\cdots 87}a^{2}-\frac{10\cdots 06}{14\cdots 29}a-\frac{29\cdots 04}{42\cdots 87}$
|
| |
| Regulator: | \( 91166245978.46117 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 91166245978.46117 \cdot 5832}{2\cdot\sqrt{194731833464812587366907938019256832}}\cr\approx \mathstrut & 1.87781405007302 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| 3.1.1481976.3, 3.1.1270979667.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | 18.0.44402766688238530812346229902570152786470217145543488433324722627805452435456.2, 18.0.113761460893702510484735982000599907732061184340694743130306972736028672.2, some data not computed |
| Minimal sibling: | 6.2.5674591274422324904667648.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.3.0.1}{3} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.1.9.19c2.6 | $x^{9} + 6 x^{6} + 18 x^{2} + 12$ | $9$ | $1$ | $19$ | $S_3\times C_3$ | $$[2, \frac{5}{2}]_{2}$$ |
|
\(2287\)
| Deg $3$ | $3$ | $1$ | $2$ | |||
| Deg $6$ | $6$ | $1$ | $5$ |