Normalized defining polynomial
\( x^{9} - x^{8} - 2x^{7} + 2x^{5} + 2x^{3} + x + 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(187881728\)
\(\medspace = 2^{8}\cdot 19^{3}\cdot 107\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(8.30\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(19\), \(107\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{2033}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-a^{5}+\frac{3}{2}a^{3}-\frac{1}{2}a^{2}+a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-a^{4}+\frac{1}{2}a^{2}+\frac{1}{2}a+1$, $\frac{1}{2}a^{6}-\frac{3}{2}a^{4}-a^{3}+\frac{3}{2}a^{2}+a+\frac{1}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3.42961731967 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 3.42961731967 \cdot 1}{2\cdot\sqrt{187881728}}\cr\approx \mathstrut & 0.389962516413 \end{aligned}\]
Galois group
$S_3\wr S_3$ (as 9T31):
A solvable group of order 1296 |
The 22 conjugacy class representatives for $S_3\wr S_3$ |
Character table for $S_3\wr S_3$ is not computed |
Intermediate fields
3.1.76.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | R | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.9.0.1}{9} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.9.8.1 | $x^{9} + 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
\(19\)
| 19.2.1.2 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
19.3.0.1 | $x^{3} + 4 x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
107.2.1.1 | $x^{2} + 214$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.0.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
107.4.0.1 | $x^{4} + 13 x^{2} + 79 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.107.2t1.a.a | $1$ | $ 107 $ | \(\Q(\sqrt{-107}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.2033.2t1.a.a | $1$ | $ 19 \cdot 107 $ | \(\Q(\sqrt{2033}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
2.870124.6t3.a.a | $2$ | $ 2^{2} \cdot 19 \cdot 107^{2}$ | 6.2.134441118992.2 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.76.3t2.a.a | $2$ | $ 2^{2} \cdot 19 $ | 3.1.76.1 | $S_3$ (as 3T2) | $1$ | $0$ |
3.870124.4t5.a.a | $3$ | $ 2^{2} \cdot 19 \cdot 107^{2}$ | 4.2.870124.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.154508.6t11.a.a | $3$ | $ 2^{2} \cdot 19^{2} \cdot 107 $ | 6.0.618032.1 | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
3.16532356.6t8.a.a | $3$ | $ 2^{2} \cdot 19^{2} \cdot 107^{2}$ | 4.2.870124.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
3.8132.6t11.a.a | $3$ | $ 2^{2} \cdot 19 \cdot 107 $ | 6.0.618032.1 | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
* | 6.2472128.9t31.a.a | $6$ | $ 2^{6} \cdot 19^{2} \cdot 107 $ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |
6.116...008.18t300.a.a | $6$ | $ 2^{6} \cdot 19^{4} \cdot 107^{5}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.892438208.18t319.a.a | $6$ | $ 2^{6} \cdot 19^{4} \cdot 107 $ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.324...928.18t311.a.a | $6$ | $ 2^{6} \cdot 19^{2} \cdot 107^{5}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.157...136.24t2893.a.a | $8$ | $ 2^{8} \cdot 19^{6} \cdot 107^{4}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.121...016.12t213.a.a | $8$ | $ 2^{8} \cdot 19^{2} \cdot 107^{4}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.157...936.36t2217.a.a | $12$ | $ 2^{10} \cdot 19^{7} \cdot 107^{8}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
12.435...576.36t2214.a.a | $12$ | $ 2^{10} \cdot 19^{5} \cdot 107^{8}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.289...024.36t2210.a.a | $12$ | $ 2^{12} \cdot 19^{6} \cdot 107^{6}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.119...336.36t2216.a.a | $12$ | $ 2^{10} \cdot 19^{7} \cdot 107^{4}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.332...976.18t315.a.a | $12$ | $ 2^{10} \cdot 19^{5} \cdot 107^{4}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
16.478...544.24t2912.a.a | $16$ | $ 2^{14} \cdot 19^{8} \cdot 107^{8}$ | 9.1.187881728.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |