Normalized defining polynomial
\( x^{9} - x^{8} - 2x^{7} + 5x^{6} - 10x^{5} + 6x^{4} + 24x^{3} - 20x^{2} - 8x + 24 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(164627620608\)
\(\medspace = 2^{8}\cdot 3\cdot 11^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.63\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}11^{8/9}\approx 41.284593015064075$ | ||
Ramified primes: |
\(2\), \(3\), \(11\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{7}-\frac{1}{8}a^{6}+\frac{3}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{744}a^{8}+\frac{17}{372}a^{7}-\frac{7}{248}a^{6}-\frac{79}{744}a^{5}+\frac{5}{248}a^{4}+\frac{21}{62}a^{3}+\frac{12}{31}a^{2}-\frac{89}{186}a+\frac{15}{62}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{119}{744}a^{8}-\frac{139}{744}a^{7}+\frac{1}{62}a^{6}+\frac{457}{744}a^{5}-\frac{245}{124}a^{4}+\frac{143}{62}a^{3}+\frac{2}{31}a^{2}-\frac{361}{186}a+\frac{40}{31}$, $\frac{1}{24}a^{8}-\frac{1}{12}a^{7}-\frac{1}{8}a^{6}+\frac{11}{24}a^{5}-\frac{3}{8}a^{4}-\frac{1}{4}a^{3}+\frac{3}{2}a^{2}-\frac{1}{3}a-\frac{3}{2}$, $\frac{1}{186}a^{8}-\frac{25}{372}a^{7}+\frac{17}{124}a^{6}+\frac{7}{93}a^{5}-\frac{21}{124}a^{4}-\frac{9}{62}a^{3}+\frac{3}{62}a^{2}+\frac{8}{93}a-\frac{1}{31}$, $\frac{19}{248}a^{8}-\frac{9}{62}a^{7}-\frac{27}{248}a^{6}+\frac{49}{248}a^{5}-\frac{149}{248}a^{4}+\frac{69}{124}a^{3}+\frac{97}{62}a^{2}-\frac{55}{31}a-\frac{137}{62}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 530.121473258 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 530.121473258 \cdot 1}{2\cdot\sqrt{164627620608}}\cr\approx \mathstrut & 2.03630824175 \end{aligned}\]
Galois group
$S_3\wr S_3$ (as 9T31):
A solvable group of order 1296 |
The 22 conjugacy class representatives for $S_3\wr S_3$ |
Character table for $S_3\wr S_3$ |
Intermediate fields
3.1.484.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | R | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.4.0.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(11\)
| 11.9.8.1 | $x^{9} + 11$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
2.4356.6t3.d.a | $2$ | $ 2^{2} \cdot 3^{2} \cdot 11^{2}$ | 6.2.25299648.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.484.3t2.b.a | $2$ | $ 2^{2} \cdot 11^{2}$ | 3.1.484.1 | $S_3$ (as 3T2) | $1$ | $0$ |
3.17424.4t5.a.a | $3$ | $ 2^{4} \cdot 3^{2} \cdot 11^{2}$ | 4.2.17424.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.23232.6t11.a.a | $3$ | $ 2^{6} \cdot 3 \cdot 11^{2}$ | 6.0.2811072.1 | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
3.69696.6t8.a.a | $3$ | $ 2^{6} \cdot 3^{2} \cdot 11^{2}$ | 4.2.17424.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
3.5808.6t11.a.a | $3$ | $ 2^{4} \cdot 3 \cdot 11^{2}$ | 6.0.2811072.1 | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
* | 6.340139712.9t31.a.a | $6$ | $ 2^{6} \cdot 3 \cdot 11^{6}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |
6.440821066752.18t300.a.a | $6$ | $ 2^{10} \cdot 3^{5} \cdot 11^{6}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.5442235392.18t319.a.a | $6$ | $ 2^{10} \cdot 3 \cdot 11^{6}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
6.27551316672.18t311.a.a | $6$ | $ 2^{6} \cdot 3^{5} \cdot 11^{6}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.113...496.24t2893.a.a | $8$ | $ 2^{16} \cdot 3^{4} \cdot 11^{8}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
8.444...416.12t213.a.a | $8$ | $ 2^{8} \cdot 3^{4} \cdot 11^{8}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.178...736.36t2217.a.a | $12$ | $ 2^{20} \cdot 3^{8} \cdot 11^{10}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
12.111...296.36t2214.a.a | $12$ | $ 2^{16} \cdot 3^{8} \cdot 11^{10}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.239...784.36t2210.a.a | $12$ | $ 2^{20} \cdot 3^{6} \cdot 11^{12}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ | |
12.220...256.36t2216.a.a | $12$ | $ 2^{20} \cdot 3^{4} \cdot 11^{10}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $-2$ | |
12.137...016.18t315.a.a | $12$ | $ 2^{16} \cdot 3^{4} \cdot 11^{10}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $2$ | |
16.418...416.24t2912.a.a | $16$ | $ 2^{24} \cdot 3^{8} \cdot 11^{14}$ | 9.1.164627620608.1 | $S_3\wr S_3$ (as 9T31) | $1$ | $0$ |