Normalized defining polynomial
\( x^{9} - 4 x^{8} + 4 x^{7} + 15 x^{6} - 32 x^{5} - 46 x^{4} + 163 x^{3} - 108 x^{2} - 18 x + 27 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1320495160384=2^{6}\cdot 379^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{9009} a^{8} + \frac{1}{99} a^{7} - \frac{40}{1001} a^{6} + \frac{617}{3003} a^{5} - \frac{397}{819} a^{4} - \frac{71}{1287} a^{3} - \frac{223}{1001} a^{2} - \frac{16}{91} a + \frac{295}{1001}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1049.83879169 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_{9}$ |
| Character table for $D_{9}$ |
Intermediate fields
| 3.1.379.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 379 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.379.2t1.1c1 | $1$ | $ 379 $ | $x^{2} - x + 95$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.379.3t2.1c1 | $2$ | $ 379 $ | $x^{3} - x^{2} + x - 4$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_379.9t3.1c1 | $2$ | $ 2^{2} \cdot 379 $ | $x^{9} - 4 x^{8} + 4 x^{7} + 15 x^{6} - 32 x^{5} - 46 x^{4} + 163 x^{3} - 108 x^{2} - 18 x + 27$ | $D_{9}$ (as 9T3) | $1$ | $0$ |
| * | 2.2e2_379.9t3.1c2 | $2$ | $ 2^{2} \cdot 379 $ | $x^{9} - 4 x^{8} + 4 x^{7} + 15 x^{6} - 32 x^{5} - 46 x^{4} + 163 x^{3} - 108 x^{2} - 18 x + 27$ | $D_{9}$ (as 9T3) | $1$ | $0$ |
| * | 2.2e2_379.9t3.1c3 | $2$ | $ 2^{2} \cdot 379 $ | $x^{9} - 4 x^{8} + 4 x^{7} + 15 x^{6} - 32 x^{5} - 46 x^{4} + 163 x^{3} - 108 x^{2} - 18 x + 27$ | $D_{9}$ (as 9T3) | $1$ | $0$ |