Properties

Label 9.1.1229457398481.1
Degree $9$
Signature $[1, 4]$
Discriminant $3^{16}\cdot 13^{4}$
Root discriminant $22.04$
Ramified primes $3, 13$
Class number $1$
Class group Trivial
Galois group $(C_9:C_3):C_2$ (as 9T10)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 12, -21, 18, -21, 12, -9, 3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 3*x^7 - 9*x^6 + 12*x^5 - 21*x^4 + 18*x^3 - 21*x^2 + 12*x - 11)
 
gp: K = bnfinit(x^9 - 3*x^8 + 3*x^7 - 9*x^6 + 12*x^5 - 21*x^4 + 18*x^3 - 21*x^2 + 12*x - 11, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 3 x^{7} - 9 x^{6} + 12 x^{5} - 21 x^{4} + 18 x^{3} - 21 x^{2} + 12 x - 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1229457398481=3^{16}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{521} a^{8} - \frac{57}{521} a^{7} - \frac{45}{521} a^{6} - \frac{184}{521} a^{5} + \frac{49}{521} a^{4} - \frac{62}{521} a^{3} + \frac{240}{521} a^{2} + \frac{44}{521} a + \frac{241}{521}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 365.969267467 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_9:C_3$ (as 9T10):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 54
The 10 conjugacy class representatives for $(C_9:C_3):C_2$
Character table for $(C_9:C_3):C_2$

Intermediate fields

3.1.351.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 27 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ R ${\href{/LocalNumberField/5.9.0.1}{9} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.9.0.1}{9} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.16.6$x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$$9$$1$$16$$(C_9:C_3):C_2$$[3/2, 2, 13/6]_{2}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_13.2t1.1c1$1$ $ 3 \cdot 13 $ $x^{2} - x + 10$ $C_2$ (as 2T1) $1$ $-1$
1.3e2.3t1.1c1$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2_13.6t1.3c1$1$ $ 3^{2} \cdot 13 $ $x^{6} + 18 x^{4} - 10 x^{3} + 81 x^{2} - 90 x + 181$ $C_6$ (as 6T1) $0$ $-1$
1.3e2.3t1.1c2$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2_13.6t1.3c2$1$ $ 3^{2} \cdot 13 $ $x^{6} + 18 x^{4} - 10 x^{3} + 81 x^{2} - 90 x + 181$ $C_6$ (as 6T1) $0$ $-1$
* 2.3e3_13.3t2.1c1$2$ $ 3^{3} \cdot 13 $ $x^{3} + 3 x - 3$ $S_3$ (as 3T2) $1$ $0$
2.3e4_13.6t5.1c1$2$ $ 3^{4} \cdot 13 $ $x^{6} + 6 x^{4} - 3 x^{3} + 9 x^{2} - 9 x + 12$ $S_3\times C_3$ (as 6T5) $0$ $0$
2.3e4_13.6t5.1c2$2$ $ 3^{4} \cdot 13 $ $x^{6} + 6 x^{4} - 3 x^{3} + 9 x^{2} - 9 x + 12$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 6.3e13_13e3.9t10.1c1$6$ $ 3^{13} \cdot 13^{3}$ $x^{9} - 3 x^{8} + 3 x^{7} - 9 x^{6} + 12 x^{5} - 21 x^{4} + 18 x^{3} - 21 x^{2} + 12 x - 11$ $(C_9:C_3):C_2$ (as 9T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.