Properties

Label 9.1.120426448093...7696.1
Degree $9$
Signature $[1, 4]$
Discriminant $2^{6}\cdot 3^{9}\cdot 7^{7}\cdot 11^{7}\cdot 13^{7}\cdot 37^{7}$
Root discriminant $17{,}029.09$
Ramified primes $2, 3, 7, 11, 13, 37$
Class number $1023516$ (GRH)
Class group $[3, 3, 3, 3, 3, 18, 234]$ (GRH)
Galois group $S_3^2$ (as 9T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![50499821168978, 4131662535, -4172790033, 4172715959, 222000, -221778, 110888, 3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 3*x^7 + 110888*x^6 - 221778*x^5 + 222000*x^4 + 4172715959*x^3 - 4172790033*x^2 + 4131662535*x + 50499821168978)
 
gp: K = bnfinit(x^9 - 3*x^8 + 3*x^7 + 110888*x^6 - 221778*x^5 + 222000*x^4 + 4172715959*x^3 - 4172790033*x^2 + 4131662535*x + 50499821168978, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} + 3 x^{7} + 110888 x^{6} - 221778 x^{5} + 222000 x^{4} + 4172715959 x^{3} - 4172790033 x^{2} + 4131662535 x + 50499821168978 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(120426448093662321424207466113182837696=2^{6}\cdot 3^{9}\cdot 7^{7}\cdot 11^{7}\cdot 13^{7}\cdot 37^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17{,}029.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 11, 13, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{37037} a^{6} - \frac{1002}{37037} a^{5} + \frac{1668}{37037} a^{4} - \frac{64}{3367} a^{3} - \frac{1}{1001} a^{2} - \frac{333}{1001} a - \frac{74}{1001}$, $\frac{1}{74074} a^{7} + \frac{17350}{37037} a^{5} - \frac{16535}{37037} a^{4} - \frac{67}{2849} a^{3} - \frac{167}{1001} a^{2} - \frac{37}{182} a - \frac{37}{1001}$, $\frac{1}{685859396543210010973882030} a^{8} + \frac{521205994623652500453}{685859396543210010973882030} a^{7} + \frac{539002511044915088753}{342929698271605005486941015} a^{6} - \frac{4772701278858095022281531}{26379207559354231191303155} a^{5} - \frac{11489657598045398455452294}{26379207559354231191303155} a^{4} - \frac{56737056922054322233660742}{342929698271605005486941015} a^{3} - \frac{1774498810139205758574767}{3707348089422756816075038} a^{2} - \frac{7977357426851292201559899}{18536740447113784080375190} a + \frac{1444676322213107177030673}{9268370223556892040187595}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{18}\times C_{234}$, which has order $1023516$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24689174751.59108 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 9T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

3.1.148148.1, 3.1.37036962963.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ R R R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.9.9.6$x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$$3$$3$$9$$S_3\times C_3$$[3/2]_{2}^{3}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
$11$11.3.2.1$x^{3} - 11$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
11.6.5.2$x^{6} + 33$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
$13$13.3.2.1$x^{3} + 26$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.5.4$x^{6} + 26$$6$$1$$5$$C_6$$[\ ]_{6}$
$37$37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.6.5.4$x^{6} + 74$$6$$1$$5$$C_6$$[\ ]_{6}$