Normalized defining polynomial
\( x^{9} - 2x^{8} - 13x^{7} - 39x^{6} + 127x^{5} + 185x^{4} + 2178x^{3} - 449x^{2} + 24992x + 22592 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(114897217668536241\) \(\medspace = 3^{4}\cdot 17^{4}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(78.63\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}17^{1/2}19^{8/9}\approx 97.82614855618401$ | ||
Ramified primes: | \(3\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}-\frac{1}{3}a^{2}-\frac{1}{2}a-\frac{1}{3}$, $\frac{1}{18}a^{5}-\frac{1}{18}a^{4}-\frac{4}{9}a^{3}-\frac{1}{18}a^{2}-\frac{5}{18}a-\frac{2}{9}$, $\frac{1}{144}a^{6}+\frac{1}{48}a^{5}-\frac{1}{16}a^{4}+\frac{1}{48}a^{3}+\frac{19}{48}a^{2}-\frac{17}{48}a-\frac{5}{18}$, $\frac{1}{432}a^{7}-\frac{1}{216}a^{5}-\frac{17}{216}a^{4}+\frac{13}{27}a^{3}+\frac{1}{216}a^{2}-\frac{37}{144}a+\frac{19}{54}$, $\frac{1}{273910896}a^{8}-\frac{43249}{273910896}a^{7}+\frac{567193}{273910896}a^{6}+\frac{2748913}{273910896}a^{5}-\frac{3009361}{273910896}a^{4}-\frac{134936717}{273910896}a^{3}+\frac{4571975}{19565064}a^{2}-\frac{32852453}{136955448}a-\frac{5714438}{17119431}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{617663}{273910896}a^{8}-\frac{654197}{273910896}a^{7}-\frac{1806251}{136955448}a^{6}-\frac{17789983}{68477724}a^{5}+\frac{33826769}{136955448}a^{4}+\frac{213252139}{136955448}a^{3}+\frac{296601755}{39130128}a^{2}-\frac{3744187157}{273910896}a+\frac{4245984685}{34238862}$, $\frac{3824995}{273910896}a^{8}-\frac{3609713}{136955448}a^{7}-\frac{54123185}{273910896}a^{6}-\frac{184916507}{273910896}a^{5}+\frac{528936119}{273910896}a^{4}+\frac{1581651973}{273910896}a^{3}+\frac{366689575}{9782532}a^{2}-\frac{7151534473}{273910896}a+\frac{7173529955}{34238862}$, $\frac{391471}{136955448}a^{8}-\frac{6198623}{273910896}a^{7}-\frac{655663}{68477724}a^{6}+\frac{54425557}{136955448}a^{5}-\frac{71759437}{136955448}a^{4}-\frac{160167961}{68477724}a^{3}+\frac{53152525}{4891266}a^{2}-\frac{3982440839}{273910896}a-\frac{633939491}{34238862}$, $\frac{23623}{136955448}a^{8}+\frac{210565}{273910896}a^{7}-\frac{1917673}{273910896}a^{6}-\frac{3638869}{273910896}a^{5}+\frac{13090027}{273910896}a^{4}+\frac{75628661}{273910896}a^{3}-\frac{30554659}{39130128}a^{2}+\frac{178569091}{68477724}a+\frac{49324157}{17119431}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 291204.143728 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 291204.143728 \cdot 9}{2\cdot\sqrt{114897217668536241}}\cr\approx \mathstrut & 12.0504919629 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 18 |
The 6 conjugacy class representatives for $D_{9}$ |
Character table for $D_{9}$ |
Intermediate fields
3.1.18411.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{4}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.9.0.1}{9} }$ | ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | R | R | ${\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.9.0.1}{9} }$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(17\) | $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.51.2t1.a.a | $1$ | $ 3 \cdot 17 $ | \(\Q(\sqrt{-51}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.18411.3t2.a.a | $2$ | $ 3 \cdot 17 \cdot 19^{2}$ | 3.1.18411.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.18411.9t3.a.a | $2$ | $ 3 \cdot 17 \cdot 19^{2}$ | 9.1.114897217668536241.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
* | 2.18411.9t3.a.b | $2$ | $ 3 \cdot 17 \cdot 19^{2}$ | 9.1.114897217668536241.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |
* | 2.18411.9t3.a.c | $2$ | $ 3 \cdot 17 \cdot 19^{2}$ | 9.1.114897217668536241.1 | $D_{9}$ (as 9T3) | $1$ | $0$ |