Properties

Label 8.8.661518125.1
Degree $8$
Signature $[8, 0]$
Discriminant $5^{4}\cdot 439\cdot 2411$
Root discriminant $12.66$
Ramified primes $5, 439, 2411$
Class number $1$
Class group Trivial
Galois group $S_4\wr C_2$ (as 8T47)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -10, -7, 15, 5, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 7*x^6 + 5*x^5 + 15*x^4 - 7*x^3 - 10*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^8 - x^7 - 7*x^6 + 5*x^5 + 15*x^4 - 7*x^3 - 10*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(661518125=5^{4}\cdot 439\cdot 2411\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 439, 2411$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{7} - a^{6} - 6 a^{5} + 4 a^{4} + 10 a^{3} - 4 a^{2} - 4 a \),  \( a \),  \( a^{2} - 2 \),  \( a^{6} - a^{5} - 6 a^{4} + 4 a^{3} + 9 a^{2} - 3 a - 1 \),  \( a - 1 \),  \( a^{5} - a^{4} - 5 a^{3} + 3 a^{2} + 5 a - 2 \),  \( a^{7} - a^{6} - 6 a^{5} + 4 a^{4} + 10 a^{3} - 5 a^{2} - 4 a + 2 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 37.8654262114 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_4\wr C_2$ (as 8T47):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 20 conjugacy class representatives for $S_4\wr C_2$
Character table for $S_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
439Data not computed
2411Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.439_2411.2t1.1c1$1$ $ 439 \cdot 2411 $ $x^{2} - x - 264607$ $C_2$ (as 2T1) $1$ $1$
1.5_439_2411.2t1.1c1$1$ $ 5 \cdot 439 \cdot 2411 $ $x^{2} - x - 1323036$ $C_2$ (as 2T1) $1$ $1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
2.5_439_2411.4t3.1c1$2$ $ 5 \cdot 439 \cdot 2411 $ $x^{4} - 2 x^{3} - 1054 x^{2} + 1055 x + 13649$ $D_{4}$ (as 4T3) $1$ $2$
4.5_439e2_2411e2.6t13.2c1$4$ $ 5 \cdot 439^{2} \cdot 2411^{2}$ $x^{6} - 570 x^{4} - 2673 x^{3} + 81225 x^{2} + 761805 x + 1521625$ $C_3^2:D_4$ (as 6T13) $1$ $4$
4.5e2_439e3_2411e3.12t34.1c1$4$ $ 5^{2} \cdot 439^{3} \cdot 2411^{3}$ $x^{6} - 570 x^{4} - 2673 x^{3} + 81225 x^{2} + 761805 x + 1521625$ $C_3^2:D_4$ (as 6T13) $1$ $4$
4.5e3_439e2_2411e2.12t36.1c1$4$ $ 5^{3} \cdot 439^{2} \cdot 2411^{2}$ $x^{6} - 570 x^{4} - 2673 x^{3} + 81225 x^{2} + 761805 x + 1521625$ $C_3^2:D_4$ (as 6T13) $1$ $4$
4.5e2_439_2411.6t13.2c1$4$ $ 5^{2} \cdot 439 \cdot 2411 $ $x^{6} - 570 x^{4} - 2673 x^{3} + 81225 x^{2} + 761805 x + 1521625$ $C_3^2:D_4$ (as 6T13) $1$ $4$
6.5e3_439e4_2411e4.12t201.1c1$6$ $ 5^{3} \cdot 439^{4} \cdot 2411^{4}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $6$
6.5e3_439e5_2411e5.12t202.1c1$6$ $ 5^{3} \cdot 439^{5} \cdot 2411^{5}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $6$
* 6.5e3_439_2411.8t47.1c1$6$ $ 5^{3} \cdot 439 \cdot 2411 $ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $6$
6.5e3_439e2_2411e2.12t200.1c1$6$ $ 5^{3} \cdot 439^{2} \cdot 2411^{2}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $6$
9.5e3_439e3_2411e3.16t1294.1c1$9$ $ 5^{3} \cdot 439^{3} \cdot 2411^{3}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $9$
9.5e3_439e6_2411e6.18t272.1c1$9$ $ 5^{3} \cdot 439^{6} \cdot 2411^{6}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $9$
9.5e6_439e6_2411e6.18t273.1c1$9$ $ 5^{6} \cdot 439^{6} \cdot 2411^{6}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $9$
9.5e6_439e3_2411e3.18t274.1c1$9$ $ 5^{6} \cdot 439^{3} \cdot 2411^{3}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $9$
12.5e6_439e7_2411e7.36t1944.1c1$12$ $ 5^{6} \cdot 439^{7} \cdot 2411^{7}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $12$
12.5e6_439e5_2411e5.24t2821.1c1$12$ $ 5^{6} \cdot 439^{5} \cdot 2411^{5}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $12$
18.5e9_439e9_2411e9.36t1758.1c1$18$ $ 5^{9} \cdot 439^{9} \cdot 2411^{9}$ $x^{8} - x^{7} - 7 x^{6} + 5 x^{5} + 15 x^{4} - 7 x^{3} - 10 x^{2} + 2 x + 1$ $S_4\wr C_2$ (as 8T47) $1$ $18$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.