Properties

Label 8.8.6134265795025.1
Degree $8$
Signature $[8, 0]$
Discriminant $5^{2}\cdot 19^{2}\cdot 29^{4}\cdot 31^{2}$
Root discriminant $39.67$
Ramified primes $5, 19, 29, 31$
Class number $1$
Class group Trivial
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![863, -544, -1302, 240, 457, 2, -41, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 41*x^6 + 2*x^5 + 457*x^4 + 240*x^3 - 1302*x^2 - 544*x + 863)
 
gp: K = bnfinit(x^8 - x^7 - 41*x^6 + 2*x^5 + 457*x^4 + 240*x^3 - 1302*x^2 - 544*x + 863, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} - 41 x^{6} + 2 x^{5} + 457 x^{4} + 240 x^{3} - 1302 x^{2} - 544 x + 863 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6134265795025=5^{2}\cdot 19^{2}\cdot 29^{4}\cdot 31^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{39} a^{6} + \frac{16}{39} a^{5} - \frac{17}{39} a^{4} - \frac{4}{39} a^{3} + \frac{1}{13} a^{2} - \frac{4}{39} a - \frac{8}{39}$, $\frac{1}{4826055} a^{7} - \frac{7984}{965211} a^{6} + \frac{1834504}{4826055} a^{5} - \frac{1625329}{4826055} a^{4} - \frac{74034}{1608685} a^{3} + \frac{1988138}{4826055} a^{2} - \frac{2235059}{4826055} a - \frac{36512}{123745}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5814.836395889703 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 8T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$
Character table for $(((C_4 \times C_2): C_2):C_2):C_2$

Intermediate fields

\(\Q(\sqrt{29}) \), 4.4.4205.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ R R ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.5_19_29_31.2t1.1c1$1$ $ 5 \cdot 19 \cdot 29 \cdot 31 $ $x^{2} - x - 21351$ $C_2$ (as 2T1) $1$ $1$
1.19_29_31.2t1.1c1$1$ $ 19 \cdot 29 \cdot 31 $ $x^{2} - x - 4270$ $C_2$ (as 2T1) $1$ $1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
* 1.29.2t1.1c1$1$ $ 29 $ $x^{2} - x - 7$ $C_2$ (as 2T1) $1$ $1$
1.5_19_31.2t1.1c1$1$ $ 5 \cdot 19 \cdot 31 $ $x^{2} - x - 736$ $C_2$ (as 2T1) $1$ $1$
1.19_31.2t1.1c1$1$ $ 19 \cdot 31 $ $x^{2} - x - 147$ $C_2$ (as 2T1) $1$ $1$
1.5_29.2t1.1c1$1$ $ 5 \cdot 29 $ $x^{2} - x - 36$ $C_2$ (as 2T1) $1$ $1$
2.5_19_29_31.4t3.1c1$2$ $ 5 \cdot 19 \cdot 29 \cdot 31 $ $x^{4} - 2 x^{3} - 130 x^{2} + 131 x + 20$ $D_{4}$ (as 4T3) $1$ $2$
2.5_19_29_31.4t3.2c1$2$ $ 5 \cdot 19 \cdot 29 \cdot 31 $ $x^{4} - 2 x^{3} - 142 x^{2} + 143 x + 842$ $D_{4}$ (as 4T3) $1$ $2$
2.5_19e2_29_31e2.4t3.2c1$2$ $ 5 \cdot 19^{2} \cdot 29 \cdot 31^{2}$ $x^{4} - x^{3} - 1620 x^{2} + 442 x + 628279$ $D_{4}$ $1$ $2$
2.5_19_31.4t3.2c1$2$ $ 5 \cdot 19 \cdot 31 $ $x^{4} - 2 x^{3} - 24 x^{2} + 25 x + 9$ $D_{4}$ (as 4T3) $1$ $2$
2.5_19_29e2_31.4t3.1c1$2$ $ 5 \cdot 19 \cdot 29^{2} \cdot 31 $ $x^{4} - x^{3} - 414 x^{2} - 1928 x + 10607$ $D_{4}$ (as 4T3) $1$ $2$
* 2.5_29.4t3.2c1$2$ $ 5 \cdot 29 $ $x^{4} - x^{3} - 3 x^{2} + x + 1$ $D_{4}$ (as 4T3) $1$ $2$
* 4.5_19e2_29e2_31e2.8t29.1c1$4$ $ 5 \cdot 19^{2} \cdot 29^{2} \cdot 31^{2}$ $x^{8} - x^{7} - 41 x^{6} + 2 x^{5} + 457 x^{4} + 240 x^{3} - 1302 x^{2} - 544 x + 863$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $4$
4.5e3_19e2_29e2_31e2.8t29.1c1$4$ $ 5^{3} \cdot 19^{2} \cdot 29^{2} \cdot 31^{2}$ $x^{8} - x^{7} - 41 x^{6} + 2 x^{5} + 457 x^{4} + 240 x^{3} - 1302 x^{2} - 544 x + 863$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $4$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.