Properties

Label 8.8.410338673.1
Degree $8$
Signature $[8, 0]$
Discriminant $17^{7}$
Root discriminant $11.93$
Ramified prime $17$
Class number $1$
Class group Trivial
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -10, -10, 15, 6, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 7*x^6 + 6*x^5 + 15*x^4 - 10*x^3 - 10*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^8 - x^7 - 7*x^6 + 6*x^5 + 15*x^4 - 10*x^3 - 10*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(410338673=17^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(17\)
Dirichlet character group:    $\lbrace$$\chi_{17}(1,·)$, $\chi_{17}(2,·)$, $\chi_{17}(4,·)$, $\chi_{17}(8,·)$, $\chi_{17}(9,·)$, $\chi_{17}(13,·)$, $\chi_{17}(15,·)$, $\chi_{17}(16,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{7} - 7 a^{5} + 14 a^{3} - 7 a \),  \( a^{3} - 3 a \),  \( a^{5} - 5 a^{3} + 5 a \),  \( a^{3} - 3 a - 1 \),  \( a^{7} - 6 a^{5} - a^{4} + 9 a^{3} + 3 a^{2} - a \),  \( a^{2} - 1 \),  \( a - 1 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28.437595417 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8$ (as 8T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 8
The 8 conjugacy class representatives for $C_8$
Character table for $C_8$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.17.8t1.1c1$1$ $ 17 $ $x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$ $C_8$ (as 8T1) $0$ $1$
* 1.17.4t1.1c1$1$ $ 17 $ $x^{4} - x^{3} - 6 x^{2} + x + 1$ $C_4$ (as 4T1) $0$ $1$
* 1.17.8t1.1c2$1$ $ 17 $ $x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$ $C_8$ (as 8T1) $0$ $1$
* 1.17.2t1.1c1$1$ $ 17 $ $x^{2} - x - 4$ $C_2$ (as 2T1) $1$ $1$
* 1.17.8t1.1c3$1$ $ 17 $ $x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$ $C_8$ (as 8T1) $0$ $1$
* 1.17.4t1.1c2$1$ $ 17 $ $x^{4} - x^{3} - 6 x^{2} + x + 1$ $C_4$ (as 4T1) $0$ $1$
* 1.17.8t1.1c4$1$ $ 17 $ $x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$ $C_8$ (as 8T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.