Normalized defining polynomial
\( x^{8} - 84x^{6} + 1890x^{4} - 10584x^{2} + 1764 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(359729184374784\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 7^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(65.99\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(3\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{210}a^{4}-\frac{2}{5}$, $\frac{1}{210}a^{5}-\frac{2}{5}a$, $\frac{1}{5250}a^{6}-\frac{1}{750}a^{4}+\frac{53}{125}a^{2}-\frac{46}{125}$, $\frac{1}{5250}a^{7}-\frac{1}{750}a^{5}+\frac{53}{125}a^{3}-\frac{46}{125}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{2625}a^{6}-\frac{89}{5250}a^{4}-\frac{19}{125}a^{2}+\frac{183}{125}$, $\frac{1}{875}a^{6}-\frac{467}{5250}a^{4}+\frac{193}{125}a^{2}-\frac{51}{125}$, $\frac{1}{875}a^{6}-\frac{367}{5250}a^{4}+\frac{68}{125}a^{2}-\frac{1}{125}$, $\frac{2}{875}a^{7}+\frac{1}{750}a^{6}-\frac{164}{875}a^{5}-\frac{187}{2625}a^{4}+\frac{511}{125}a^{3}-\frac{4}{125}a^{2}-\frac{3002}{125}a+\frac{1203}{125}$, $\frac{1}{1750}a^{7}-\frac{23}{5250}a^{6}-\frac{14}{375}a^{5}+\frac{587}{1750}a^{4}+\frac{34}{125}a^{3}-\frac{719}{125}a^{2}+\frac{962}{125}a+\frac{608}{125}$, $\frac{1}{875}a^{7}-\frac{2}{2625}a^{6}-\frac{271}{2625}a^{5}+\frac{29}{750}a^{4}+\frac{318}{125}a^{3}+\frac{38}{125}a^{2}-\frac{1776}{125}a-\frac{666}{125}$, $\frac{4}{2625}a^{6}-\frac{83}{750}a^{4}+\frac{174}{125}a^{2}+2a+\frac{57}{125}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 32924.8756983 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 32924.8756983 \cdot 1}{2\cdot\sqrt{359729184374784}}\cr\approx \mathstrut & 0.222201137150 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{21}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{6}, \sqrt{14})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.8.22.3 | $x^{8} + 8 x^{7} + 60 x^{6} + 136 x^{5} + 256 x^{4} + 240 x^{3} + 104 x^{2} + 112 x + 76$ | $4$ | $2$ | $22$ | $Q_8$ | $[3, 4]^{2}$ |
\(3\)
| 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(7\)
| 7.8.6.1 | $x^{8} + 14 x^{4} - 245$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.24.2t1.a.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{6}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.21.2t1.a.a | $1$ | $ 3 \cdot 7 $ | \(\Q(\sqrt{21}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.56.2t1.a.a | $1$ | $ 2^{3} \cdot 7 $ | \(\Q(\sqrt{14}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.112896.8t5.g.a | $2$ | $ 2^{8} \cdot 3^{2} \cdot 7^{2}$ | 8.8.359729184374784.2 | $Q_8$ (as 8T5) | $-1$ | $2$ |