Normalized defining polynomial
\( x^{8} - 105x^{6} + 3465x^{4} - 44100x^{2} + 176400 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(343064484000000\) \(\medspace = 2^{8}\cdot 3^{6}\cdot 5^{6}\cdot 7^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(65.60\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{3/4}5^{3/4}7^{3/4}\approx 65.60273867532537$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{105}a^{4}$, $\frac{1}{210}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2100}a^{6}-\frac{1}{420}a^{4}+\frac{9}{20}a^{2}$, $\frac{1}{4200}a^{7}-\frac{1}{840}a^{5}-\frac{11}{40}a^{3}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{420}a^{6}-\frac{17}{84}a^{4}+\frac{17}{4}a^{2}-22$, $\frac{1}{2100}a^{6}-\frac{1}{20}a^{4}+\frac{29}{20}a^{2}-8$, $\frac{3}{350}a^{6}-\frac{149}{210}a^{4}+\frac{141}{10}a^{2}-69$, $\frac{1}{1400}a^{7}+\frac{1}{2100}a^{6}-\frac{11}{168}a^{5}-\frac{5}{84}a^{4}+\frac{67}{40}a^{3}+\frac{49}{20}a^{2}-\frac{27}{2}a-27$, $\frac{1}{420}a^{7}-\frac{11}{1050}a^{6}-\frac{17}{84}a^{5}+\frac{9}{10}a^{4}+\frac{17}{4}a^{3}-\frac{189}{10}a^{2}-22a+97$, $\frac{1}{4200}a^{7}-\frac{1}{420}a^{6}-\frac{13}{840}a^{5}+\frac{73}{420}a^{4}+\frac{9}{40}a^{3}-\frac{13}{4}a^{2}-\frac{1}{2}a+15$, $\frac{13}{4200}a^{7}-\frac{11}{1050}a^{6}-\frac{221}{840}a^{5}+\frac{9}{10}a^{4}+\frac{217}{40}a^{3}-\frac{189}{10}a^{2}-26a+92$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 13005.5748428 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 13005.5748428 \cdot 4}{2\cdot\sqrt{343064484000000}}\cr\approx \mathstrut & 0.359510545271 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{21}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{21})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.4.2 | $x^{4} + 4 x^{3} + 4 x^{2} + 12$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
2.4.4.2 | $x^{4} + 4 x^{3} + 4 x^{2} + 12$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
\(3\) | 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(5\) | 5.4.3.1 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.1 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(7\) | 7.8.6.1 | $x^{8} + 14 x^{4} - 245$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.105.2t1.a.a | $1$ | $ 3 \cdot 5 \cdot 7 $ | \(\Q(\sqrt{105}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.21.2t1.a.a | $1$ | $ 3 \cdot 7 $ | \(\Q(\sqrt{21}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.176400.8t5.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ | 8.8.343064484000000.1 | $Q_8$ (as 8T5) | $-1$ | $2$ |