Normalized defining polynomial
\( x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33554432000000=2^{31}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(160=2^{5}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{160}(1,·)$, $\chi_{160}(67,·)$, $\chi_{160}(9,·)$, $\chi_{160}(43,·)$, $\chi_{160}(81,·)$, $\chi_{160}(147,·)$, $\chi_{160}(89,·)$, $\chi_{160}(123,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{35} a^{5} + \frac{1}{7} a^{3} - \frac{2}{7} a$, $\frac{1}{35} a^{6} - \frac{2}{35} a^{4} - \frac{2}{7} a^{2}$, $\frac{1}{35} a^{7} + \frac{3}{7} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6237.2438059 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.51200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.3 | $x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 18$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| $5$ | 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e5_5.8t1.5c1 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450$ | $C_8$ (as 8T1) | $0$ | $1$ |
| * | 1.2e4_5.4t1.3c1 | $1$ | $ 2^{4} \cdot 5 $ | $x^{4} - 20 x^{2} + 50$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.2e5_5.8t1.5c2 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450$ | $C_8$ (as 8T1) | $0$ | $1$ |
| * | 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e5_5.8t1.5c3 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450$ | $C_8$ (as 8T1) | $0$ | $1$ |
| * | 1.2e4_5.4t1.3c2 | $1$ | $ 2^{4} \cdot 5 $ | $x^{4} - 20 x^{2} + 50$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.2e5_5.8t1.5c4 | $1$ | $ 2^{5} \cdot 5 $ | $x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450$ | $C_8$ (as 8T1) | $0$ | $1$ |