Normalized defining polynomial
\( x^{8} - 4x^{7} - 4x^{6} + 20x^{5} + 4x^{4} - 20x^{3} - 4x^{2} + 4x + 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[8, 0]$ |
| |
| Discriminant: |
\(3057647616\)
\(\medspace = 2^{22}\cdot 3^{6}\)
|
| |
| Root discriminant: | \(15.33\) |
| |
| Galois root discriminant: | $2^{11/4}3^{3/4}\approx 15.33463450191054$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{25}a^{7}+\frac{3}{25}a^{6}-\frac{8}{25}a^{5}-\frac{11}{25}a^{4}+\frac{2}{25}a^{3}-\frac{6}{25}a^{2}+\frac{4}{25}a+\frac{7}{25}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{25}a^{7}-\frac{16}{25}a^{6}+\frac{1}{25}a^{5}+\frac{92}{25}a^{4}-\frac{69}{25}a^{3}-\frac{143}{25}a^{2}+\frac{87}{25}a+\frac{46}{25}$, $\frac{44}{25}a^{7}-\frac{193}{25}a^{6}-\frac{102}{25}a^{5}+\frac{916}{25}a^{4}-\frac{162}{25}a^{3}-\frac{789}{25}a^{2}+\frac{101}{25}a+\frac{108}{25}$, $a$, $\frac{44}{25}a^{7}-\frac{193}{25}a^{6}-\frac{102}{25}a^{5}+\frac{916}{25}a^{4}-\frac{162}{25}a^{3}-\frac{789}{25}a^{2}+\frac{76}{25}a+\frac{133}{25}$, $\frac{26}{25}a^{7}-\frac{122}{25}a^{6}-\frac{33}{25}a^{5}+\frac{589}{25}a^{4}-\frac{223}{25}a^{3}-\frac{581}{25}a^{2}+\frac{104}{25}a+\frac{107}{25}$, $\frac{72}{25}a^{7}-\frac{309}{25}a^{6}-\frac{201}{25}a^{5}+\frac{1508}{25}a^{4}-\frac{131}{25}a^{3}-\frac{1432}{25}a^{2}+\frac{88}{25}a+\frac{254}{25}$, $\frac{22}{25}a^{7}-\frac{84}{25}a^{6}-\frac{101}{25}a^{5}+\frac{408}{25}a^{4}+\frac{169}{25}a^{3}-\frac{357}{25}a^{2}-\frac{162}{25}a+\frac{4}{25}$
|
| |
| Regulator: | \( 157.39263888 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 157.39263888 \cdot 1}{2\cdot\sqrt{3057647616}}\cr\approx \mathstrut & 0.36433481222 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.27648.1 x2, 4.4.13824.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.4.27648.1, 4.4.13824.1 |
| Minimal sibling: | 4.4.13824.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.22d1.23 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $$[2, 3, \frac{7}{2}]$$ |
|
\(3\)
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *8 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *8 | 1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *8 | 1.24.2t1.a.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{6}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *8 | 1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *16 | 2.1152.4t3.d.a | $2$ | $ 2^{7} \cdot 3^{2}$ | 8.8.3057647616.1 | $D_4$ (as 8T4) | $1$ | $2$ |