Normalized defining polynomial
\( x^{8} - 2x^{7} - 14x^{6} + 40x^{5} + 10x^{4} - 106x^{3} + 68x^{2} + 26x - 21 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(181912486144\) \(\medspace = 2^{8}\cdot 19^{2}\cdot 23^{2}\cdot 61^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(25.56\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/28}19^{1/2}23^{1/2}61^{1/2}\approx 351.7133437722911$ | ||
Ramified primes: | \(2\), \(19\), \(23\), \(61\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{61}a^{7}+\frac{4}{61}a^{6}+\frac{10}{61}a^{5}-\frac{22}{61}a^{4}+\frac{16}{61}a^{2}-\frac{19}{61}a-\frac{27}{61}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{39}{61}a^{7}-\frac{27}{61}a^{6}-\frac{586}{61}a^{5}+\frac{789}{61}a^{4}+24a^{3}-\frac{2243}{61}a^{2}-\frac{314}{61}a+\frac{655}{61}$, $a-2$, $\frac{30}{61}a^{7}-\frac{2}{61}a^{6}-\frac{432}{61}a^{5}+\frac{377}{61}a^{4}+19a^{3}-\frac{1167}{61}a^{2}-\frac{509}{61}a+\frac{349}{61}$, $a^{7}-14a^{5}+12a^{4}+34a^{3}-38a^{2}-7a+11$, $\frac{112}{61}a^{7}-\frac{40}{61}a^{6}-\frac{1625}{61}a^{5}+\frac{1806}{61}a^{4}+65a^{3}-\frac{5223}{61}a^{2}-\frac{664}{61}a+\frac{1490}{61}$, $\frac{58}{61}a^{7}-\frac{12}{61}a^{6}-\frac{823}{61}a^{5}+\frac{859}{61}a^{4}+33a^{3}-\frac{2549}{61}a^{2}-\frac{431}{61}a+\frac{752}{61}$, $\frac{224}{61}a^{7}-\frac{80}{61}a^{6}-\frac{3250}{61}a^{5}+\frac{3612}{61}a^{4}+130a^{3}-\frac{10385}{61}a^{2}-\frac{1389}{61}a+\frac{2675}{61}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2279.4264387992516 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 2279.4264387992516 \cdot 1}{2\cdot\sqrt{181912486144}}\cr\approx \mathstrut & 0.684075909156845 \end{aligned}\]
Galois group
$C_2^3:\GL(3,2)$ (as 8T48):
A non-solvable group of order 1344 |
The 11 conjugacy class representatives for $C_2^3:\GL(3,2)$ |
Character table for $C_2^3:\GL(3,2)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 8 sibling: | deg 8 |
Degree 14 siblings: | deg 14, deg 14 |
Degree 28 siblings: | deg 28, deg 28, deg 28 |
Degree 42 siblings: | deg 42, deg 42, deg 42, deg 42 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | R | R | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.13 | $x^{8} + 2 x + 2$ | $8$ | $1$ | $8$ | $C_2^3:(C_7: C_3)$ | $[8/7, 8/7, 8/7]_{7}^{3}$ |
\(19\) | 19.4.0.1 | $x^{4} + 2 x^{2} + 11 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
19.4.2.2 | $x^{4} - 2888 x^{3} - 767106 x^{2} - 76532 x + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
\(23\) | $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
23.2.0.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.4.2.2 | $x^{4} - 483 x^{2} + 2645$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
\(61\) | 61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
61.2.1.1 | $x^{2} + 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
61.2.1.1 | $x^{2} + 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |