Normalized defining polynomial
\( x^{8} - x^{7} - 112x^{6} + 95x^{5} + 2881x^{4} + 835x^{3} - 16858x^{2} - 25817x - 10769 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[8, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(1686221298140625\)
\(\medspace = 3^{6}\cdot 5^{6}\cdot 23^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(80.05\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(5\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{55}a^{6}-\frac{5}{11}a^{5}+\frac{4}{55}a^{4}-\frac{1}{55}a^{3}-\frac{21}{55}a^{2}+\frac{8}{55}a-\frac{1}{5}$, $\frac{1}{6003903455}a^{7}+\frac{3647516}{545809405}a^{6}-\frac{847883921}{6003903455}a^{5}-\frac{32555902}{545809405}a^{4}-\frac{1131850557}{6003903455}a^{3}+\frac{34671042}{545809405}a^{2}-\frac{2438259778}{6003903455}a-\frac{39479591}{545809405}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1895617}{545809405}a^{7}-\frac{3933086}{545809405}a^{6}-\frac{208060392}{545809405}a^{5}+\frac{403429304}{545809405}a^{4}+\frac{5021140419}{545809405}a^{3}-\frac{3795149103}{545809405}a^{2}-\frac{5516714390}{109161881}a-\frac{19034084374}{545809405}$, $\frac{31170}{1063579}a^{7}-\frac{59580}{1063579}a^{6}-\frac{3434223}{1063579}a^{5}+\frac{6096030}{1063579}a^{4}+\frac{84021180}{1063579}a^{3}-\frac{51266340}{1063579}a^{2}-\frac{476796690}{1063579}a-\frac{30614729}{96689}$, $\frac{11062037}{6003903455}a^{7}-\frac{3314533}{545809405}a^{6}-\frac{1312792257}{6003903455}a^{5}+\frac{277495916}{545809405}a^{4}+\frac{33567990396}{6003903455}a^{3}-\frac{2461366896}{545809405}a^{2}-\frac{196006412696}{6003903455}a-\frac{12221067672}{545809405}$, $\frac{280945854}{6003903455}a^{7}-\frac{553602493}{6003903455}a^{6}-\frac{31001512254}{6003903455}a^{5}+\frac{56675076684}{6003903455}a^{4}+\frac{69249463304}{545809405}a^{3}-\frac{98913831888}{1200780691}a^{2}-\frac{4389885018228}{6003903455}a-\frac{303043721982}{545809405}$, $\frac{139779636}{6003903455}a^{7}-\frac{281870602}{6003903455}a^{6}-\frac{15388754256}{6003903455}a^{5}+\frac{29171913411}{6003903455}a^{4}+\frac{374896554141}{6003903455}a^{3}-\frac{56667471153}{1200780691}a^{2}-\frac{2069534936922}{6003903455}a-\frac{127692841368}{545809405}$, $\frac{18969961}{1200780691}a^{7}-\frac{4461903}{109161881}a^{6}-\frac{2045389473}{1200780691}a^{5}+\frac{460440250}{109161881}a^{4}+\frac{46642880363}{1200780691}a^{3}-\frac{5336205120}{109161881}a^{2}-\frac{229475018995}{1200780691}a-\frac{11829043685}{109161881}$, $\frac{620773096}{6003903455}a^{7}-\frac{146234269}{545809405}a^{6}-\frac{66982332836}{6003903455}a^{5}+\frac{15046049858}{545809405}a^{4}+\frac{1526460200368}{6003903455}a^{3}-\frac{173353166878}{545809405}a^{2}-\frac{7444766050858}{6003903455}a-\frac{382685904646}{545809405}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 112143.767488 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{0}\cdot 112143.767488 \cdot 2}{2\cdot\sqrt{1686221298140625}}\cr\approx \mathstrut & 0.699129813233 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{69}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{345}) \), \(\Q(\sqrt{5}, \sqrt{69})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.1.0.1}{1} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(5\)
| 5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(23\)
| 23.8.6.1 | $x^{8} - 138 x^{4} - 217948$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.345.2t1.a.a | $1$ | $ 3 \cdot 5 \cdot 23 $ | \(\Q(\sqrt{345}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.69.2t1.a.a | $1$ | $ 3 \cdot 23 $ | \(\Q(\sqrt{69}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.119025.8t5.a.a | $2$ | $ 3^{2} \cdot 5^{2} \cdot 23^{2}$ | 8.8.1686221298140625.1 | $Q_8$ (as 8T5) | $-1$ | $2$ |